Reduce: Non-bio renewables

Biobased Products for a Sustainable (Bio)economy | edX

Introduction Climate change has become one of the greatest threats of this century to environmental, as well as global, security, with adverse impacts on health, wealth and political stability. Over the past decade, energy-related CO2 emissions have increased by 1% per year on average, despite levelling off periodically. If historical trends continue, energy-related emissions will increase by a compound annual rate of 0.7% per year to 43 gigatonnes (Gt) by 2050 (up from 34 Gt in 2019), resulting in a likely temperature rise of 3°C or more in the second half of this century. Governments’ current and planned policies would result in a levelling of emissions, with emissions in 2050 similar to those today, but this would still cause a temperature rise of about 2.5°C. The Paris Agreement establishes a goal to limit the increase of global temperature to “well below” 2°C, and ideally to 1.5°C, compared to pre-industrial levels, by this century. To realise this climate target, a profound transformation of the global energy landscape is essential.

Current Status

This section will show how renewable energy is a proven and available technology by providing the latest figures, trends and market developments in renewable energy deployment worldwide. The strong business case for renewables is demonstrated by their cost, performance and deployment evolution, especially when considering trends in solar PV, wind and other renewable power generation options, along with the growing viability of energy storage technologies. The current innovation landscape for enabling technologies, business models and system operation will also be outlined and discussed.

Renewable power generation continues to grow in 2020, despite the COVID-19 pandemic, but new capacity additions in 2020 will be lower than the new record previously anticipated. Nonetheless, renewables steadily increasing competitiveness, along with their modularity, rapid scalability and job creation potential, make them highly attractive as countries and communities evaluate economic stimulus options.

Figure 1. Evolution of LCOE costs for solar PV and wind onshore (2010- 2019)

The share of renewable energy in electricity generation has been increasing steadily in the past years and renewable power technologies are now dominating the global market for new generation capacity. From 2010 to 2018, the renewable electricity generation share increased
from around 20% to nearly 26%, or 18% to 23% without considering bioenergy.

Figure 2. Evolution of renewable energy in the power sector (2010- 2017/2018/2019)

Dramatic shifts are taking place in the way that energy systems operate, driven by increased
digitalisation, the decentralisation and democratisation of power generation, and the growing
electrification of end-use sectors. Indeed, the main driver for the energy transformation is increased use of electricity, such as in the growing electric mobility revolution. Electric vehicle
(EV) sales (both battery-electric and plug-in hybrids) reached 2.2 million units in 2019 (InsideEVs, 2020a), continuing the growth from the previous year.

Renewable technology and carbon reduction outlook

Renewable energy, combined with intensified electrification, is key for the achievement of the Paris Agreement goals. To help enable the necessary transformation of the global energy sector, IRENA has developed an extensive and data-rich energy scenario database and analytical framework, which highlights immediately deployable, cost-effective options for countries to fulfil climate commitments and assesses the projected impacts of policy and technology change.

However, the reduction of carbon emissions is not the only reason why the world should embrace the energy transformation. Figure 4 (below) outlines other important drivers.

Figure 4. Key drivers for the energy transformation

To set the world on a pathway towards meeting the aims of the Paris Agreement, energyrelated carbon dioxide (CO2 ) emissions need to be reduced by a minimum of 3.8% per
year from now until 2050, with continued reductions thereafter.

Figure 5 shows the possible paths of annual energy-related CO2 emissions and reductions as
per three scenarios: the Baseline Energy Scenario (indicated by the orange line); the Planned
Energy Scenario (indicated by the yellow line); and IRENA’s energy transformation pathway, the
Transforming Energy Scenario (indicated by the blue line).

Figure 5. Annual energy-related CO2
emissions and mitigation contributions by technology in the Baseline
Energy Scenario, the Planned Energy Scenario and the Transforming Energy Scenario (2010-2050)

In the Baseline Energy Scenario, energy-related emissions would to increase at a compound
annual rate of 0.7% per year to 43 gigatonnes (Gt) by 2050 (up from 34 Gt in 2019), resulting
in a likely temperature rise of 3°C or more by the end of the century. If the plans and pledges of countries are met as reflected in the Planned Energy Scenario, then energy-related CO2
emissions would increase each year until 2030, before dipping slightly by 2050 to just below today’s level.

Global pathway and decarbonising with renewables
Under current and planned policies in the Planned Energy Scenario, the total share of non-biomass renewable energy in the total primary energy supply (TPES) would only increase from around 5% to 17%, while under the Transforming Energy Scenario it increases to 42% (Figure 6). Renewable energy use in absolute terms, excluding biomass, would increase from 25 exajoules (EJ) in 2017 to 225 EJ in 2050 in the Transforming Energy Scenario. TPES would also fall slightly below 2017 levels, despite significant population and economic growth.

Figure 6. The global energy supply must become more efficient and more renewable

Scaling up electricity from renewables is crucial for the decarbonisation of the world’s
energy system. The most important synergy of the global energy transformation comes from
the combination of increasing low-cost renewable power technologies and the wider adoption of electricity for end-use applications in transport and heat and hydrogen production. To deliver the energy transition at the pace and scale needed would require almost complete decarbonisation of the electricity sector by 2050.

For power generation, solar PV and wind energy would lead the way. Wind power would
supply more than one-third of total electricity demand. Solar PV power would follow, supplying 25% of total electricity demand (Figure 7), which would represent more than a 10-fold rise in solar PV’s share of the generation mix by 2050 compared to 2017 levels. To achieve that generation mix, much greater capacity expansion would be needed by 2050 for solar PV (8 519 GW) than for wind (6 044 GW).

Figure 7. Breakdown of electricity generation and total installed capacity by source, 2017-2050

G20 overview The Group of Twenty (G20) members account for 85% of the global economy, two-thirds of the global population and almost 80% of global energy consumption. The energy mix in G20 economies is quite varied; however, most countries currently rely on a high share of fossil fuels in their total energy supply and thus are responsible for more than 80% of global CO2 emissions. Yet G20 economies have also become leaders in fostering cleaner energy systems, and their energy transition will shape global energy markets and determine both emissions and sustainable pathways globally.

Table 2 presents the evolution of key energy sector indicators in the G20 from today’s levels in the Transforming Energy Scenario (to 2030, 2040 and 2050). The Transforming Energy Scenario
leads to lower levels of supply and consumption of energy in absolute terms. By 2050, 51% of final energy consumption is electrified, with the highest share in buildings at 65%, followed by transport at 45% and industry at 44%. Renewable energy would have a prominent role in the electricity mix, with solar PV and wind (onshore and offshore) leading the way in absolute terms.

Table 2: Evolution of key energy indicators in G20 for 2017 and for the Transforming Energy Scenario in
2030-2040 and 2050

Socio-economic footprint of the G20 energy transition

A true and complete energy transition includes both the energy transition and the socio-economic system transition, and the linkages between them. Therefore, a wider picture is needed that views energy and the economy as part of a holistic system.

The approach analyses variables such as GDP, employment and welfare (Figure 17). The results from the socioeconomic footprint analysis of the Transforming Energy Scenario globally show an additional net 15 million jobs and a 13.5% improvement in welfare by 2050, as well as an annual average boost of 2% in GDP between 2019 and 2050 compared to the Planned Energy Scenario.

Figure 17. Estimating the socio-economic footprint of transition roadmaps

Energy sector and renewable energy jobs in the G20
The energy transition implies deep changes in the energy sector, with strong implications for
the evolution of jobs. While some technologies experience significant growth (e.g. renewable
generation, energy efficiency and energy flexibility), others would be gradually phased out (e.g.
fossil fuels), and all of this happens simultaneously with the evolution of energy demand.

Figure 18 presents the evolution of energy sector jobs in the G20 for both the Planned Energy
Scenario and the Transforming Energy Scenario, by technologies. The Transforming Energy
Scenario leads to a higher number of overall energy sector jobs than the PES, as declines in the
number of fossil fuel jobs are more than offset by increases in jobs in renewable energy, energy efficiency and energy flexibility. By 2050, nearly 71 million people would be employed in the energy sector in the Transforming Energy Scenario, 46% in renewable energy, 25% in energy efficiency and 15% in energy flexibility. About 13% of energy jobs would still be in fossil fuels.

Figure 18. Evolution of energy sector jobs, by technology, under the Planned Energy Scenario and the
Transforming Energy Scenario from 2017 to 2030 and 2050

Gross domestic product in G20
Figure 23 show the yearly evolution of the difference in GDP between the Planned Energy
Scenario and the Transforming Energy Scenario up to 2050, as well as the impact from
the different drivers of the GDP difference. The energy transition brings about a significant
improvement in GDP, with the increase rising to 3% before 2040 and remaining there until 2050.

Figure 23. Dynamic evolution of the drivers for GDP creation from the Planned Energy Scenario and the
Transforming Energy Scenario across the 2019 – 2050 period

Welfare in the G20
The sections above discussed the employment implications of the energy transition. Beyond
employment, other dimensions affect welfare. To capture a more holistic picture of the energy
transition impact, IRENA uses a welfare index with three dimensions (economic, social and
environmental) and two subdimensions in each. Figure 25 presents the results of the welfare index for the G20 in the years 2030 and 2050. The welfare improvement of the Transforming Energy Scenario over the Planned Energy Scenario is very important, reaching 14% in 2050. Social and environmental dimensions, and specifically the health and GHG emissions subdimensions, dominate the overall welfare index results in the G20.

Figure 25. Evolution of the Welfare index for the G20 under the Transforming Energy Scenario

Barriers to the deployment of renewable energy

Despite the powerful factors driving the global uptake of renewable energy, multiple barriers inhibit further uptake in developed and developing markets. These vary based on specific markets and renewable energy technologies. This section outlines the some of the main barriers globally.

Enabling policies

Five years after the historic signing of the Paris Agreement, countries around the world
are struggling to translate their emissions reduction pledges into concrete actions to fight
climate change. IRENA estimates that if all national renewable energy targets in the first round
of Nationally Determined Contributions (NDCs) are implemented, around 3.2 TW of renewable
power capacity would be installed globally by 2030, 59% short of the capacity needed according to IRENA’s Transforming Energy Scenario. In the G20, around 2.8 TW of renewable power capacity would be installed by 2030, 60% short of the 7 TW envisioned in the Transforming Energy Scenario (IRENA, 2019h). Considerable opportunity exists to raise ambitions in a cost-effective way through enhanced renewable energy targets.

price was USD 48/MWh. G20 countries have been leading these trends (Figure 26), with record
low prices achieved on many occasions in Brazil, Mexico and Saudi Arabia.

Figure 26. Weighted average prices of energy resulting from solar and wind auctions, globally and in G20
countries, and capacity awarded each year, 2011-2018

Measures to improve power system flexibility are needed to enable the integration of
higher shares of VRE. Investment must be steered into innovations in all flexible resources
(storage, demand-side management, interconnectors and dispatchable power plants), market
design and system operations.

Click to download:

Posted in Global Warming, Industrial, Renewables, Solar, Solar PV | Tagged , , , , , , , | Leave a comment

SOLAR SUPPLY CHAIN TRACEABILITY PROTOCOL 1.0 INDUSTRY GUIDANCE

Solar manufacturers, utilities and developers back anti-forced labour  pledge - PV Tech

INTRODUCTION
Transparency of supply chains is paramount. Equipment purchasers, electricity end-users, and other stakeholders demand transparency for reasons ranging from sustainability to corporate social responsibility to import compliance. In this environment, manufacturers must have the proper systems in place to meet stakeholder needs and build trust. To assist the industry, SEIA, with the support of Clean Energy Associates (CEA) and Senergy Technical Services (STS), has developed this Solar Supply Chain Traceability Protocol 1.0 (Protocol) to help manufacturers and importers demonstrate the provenance of their products by developing and implementing a traceability program consistent with the general principles herein.

SCOPE
The Protocol is intended to have universal application across product lines intended for export to the U.S. market.Key adopters of the Protocol will include:
• Equipment manufacturers; and
• U.S. importers.
While the Protocol focuses on the provenance of material inputs, it also recognizes the importance of independent, third-party audits and a strong corporate social responsibility and import compliance platform. In assessing conformance, auditors shall apply a holistic approach which recognizes an organization’s unique business processes. No single factor will be dispositive.

TERMS AND DEFINITIONS
Accountability – State of being answerable for decisions and activities to the organization’s governing bodies, legal authorities, and, more broadly, its stakeholders. Documentation – Documents and attestations sufficient to generally establish place and date of manufacture
and/or transfer of goods. Due diligence – A comprehensive, proactive process to investigate, appraise, or evaluate a product or organization. Due diligence is conducted to identify the actual and potential consequences of an organization’s decisions and activities over the entire life cycle of a project or organizational activity, with the aim of avoiding and mitigating negative impacts.

DRIVERS FOR TRANSPARENCY IN THE SUPPLY CHAIN GENERAL
The motivations of organizations for practicing transparency in the supply chain differ depending on the type of organization and the context in which they operate. Drivers for transparency should be analyzed to help define the transparency objectives and goals for the supply chain and to aid internal communication. This section provides examples of drivers for the implementation of a transparency system in the supply chain.

MANAGEMENT OF TRANSPARENCY IN THE SUPPLY CHAIN RISK APPROACH
One key to establishing a robust supply chain transparency system resides in addressing risk – both internal and external. Risk management should therefore be integrated in the decisional and operational activities and conducted in a dynamic, iterative, and responsive manner.

The organization should identify, prioritize, and address risks to increase its resilience to events which can impede product traceability. This includes considering how suppliers are capable of meeting traceability requirements such as monitoring and auditing. It is recommended that the organization conduct an initial review to create a baseline of the risks and opportunities in relation with its products’ traceability.

INTEGRATION OF TRANSPARENCY INTO MANAGEMENT SYSTEMS CONTEXT
The organization should consider product traceability as a priority issue, internally and externally, in its contextual analysis. Stakeholders should be identified and engaged, and information relevant to material provenance monitored and reviewed.

INTEGRATION OF TRANSPARENCY INTO OPERATIONAL PROCESSES PRODUCT DEVELOPMENT
The organization should factor traceability considerations into the product design process.

SUPPLY CHAIN MAPPING
The organization should be able to present a description of the entities involved in creating the product that is being imported. This description can include an illustration of the links in the supply chain in a step-by-step flow from raw materials to finished goods, i.e., supply chain map. While the map can take many forms, the essential elements of a map are illustrated here:

The map should identify individual steps in the process and each step should include information about that step’s entity, such as the item being produced, a description of the overall manufacturing process(es) being employed, the name of the producer, and the location of production. In the case of multiple suppliers of the same item, the map would indicate multiple entities. In the event there are multiple production locations for an entity that are in the supply chain for the final product, the relevant locations should be identified.

Each time there is a transaction between steps in the supply chain, the importer should disclose the nature of the document that codifies the transaction, i.e., a purchase order, supply contract, etc., as well as identify the business unit of the individual who places the order.
Complex products and products with many components or suppliers can lead to complex supply chain maps. These can be simplified by addressing raw materials or intermediate items that are of particular importance, either because of location, cost, uniqueness of the time, or other factors. A more detailed map is illustrated here:

If wafers from different logs are combined, then a new and unique identifier should be assigned to the mixed batch and the provenance of the wafers in the batch should be linked to the batch identifier.

In short, for a pallet of wafers, perhaps identified only by a unique pallet number, the purchaser of the wafers should be able to trace the provenance back to a specific ingot or ingots.

RELEASE OF PRODUCTS
The organization should integrate traceability and security requirements into its product releasing process. The release process should include, as a minimum:
• Availability of traceability information for the products to be shipped;
• Correct identification of the product;
• Where applicable, serialization of the materials;
• Integrity of the products packaging;
• Presence and condition of security elements, including where applicable, transportation seals; and
• Documentary review of logistic documentation including bill of lading and transportation information.
The organization should have documented procedures to prevent shipment of products that have not passed through the release process. Releasing process shall be conducted by qualified personnel having received supply chain security training.

SOLAR WAFER
Poly-Si inputs for production of monocrystalline silicon wafers destined for use in solar modules should be delivered in designated and uniquely identifiable shipping units, e.g., lot or batch number. The logistics documents associated with each shipping unit should preserve the upstream provenance of the input material and that information should be linked to the output product.

The manufacturing processes of solar wafers should include, when necessary, rigorous controls to prevent mixing of input poly-Si from different sources. Additionally, there may need to be rigorous controls to prevent mixing of intermediate products on the production floor. Each intermediate product generated during solar wafer production should be tracked with a Manufacturing Execution System (MES) that can link each intermediate product to its parent product and resulting product(s).

Solar wafer output material should be boxed in defined and easy to handle amounts, e.g., 100 wafers per box. Each shipping unit above should have a unique serial number that can be used to trace the input poly-Si material.

Where material inputs from different sources are mixed or blended together, the manufacturing process should include rigorous controls to maintain provenance, e.g., the source of both inputs travels across the supply chain. Each intermediate product generated during solar cell production, should be tracked with a Manufacturing Execution System (MES) that can link each intermediate product to its parent product and resulting product.

Solar cell output material should be boxed in defined and easy to handle amounts, e.g., 100 wafers per box. Boxes of cell may be combined into larger boxes which are then combined on a pallet. Each shipping unit should have a unique identifier, e.g., unique box number, that can be used to trace the input solar wafer material. When necessary, manufacturers should also maintain an auditable process for keeping material from different sources physically separated at each intermediate step in the solar cell manufacturing process.

SOLAR MODULE
Solar cell inputs for production of solar modules should be delivered in designated, serialized shipping units. The logistics documents associated with each shipping unit should preserve the upstream provenance of the input material and that information should be linked to the output product.

The manufacturing processes of solar modules should include rigorous controls to prevent mixing of input cells from different sources. Additionally, there must be rigorous controls to prevent mixing of intermediate products on the production floor. Each intermediate product generated during solar module production should be tracked with a Manufacturing Execution System (MES) that can link each intermediate product to its parent product(s) and resulting product(s).

Solar module outputs should be palletized in defined amounts, e.g., 20-30 modules per pallet. Each pallet should have a unique serial number that can be used to trace the input solar cell material.

ANNEX B: GUIDANCE ON RISK MANAGEMENT RISK FACTORS
Supply chain risks can be associated with the following:

RISK MANAGEMENT PROCESS
Risk management processes shall follow an improvement cycle based on the inputs gathered.

RISK IDENTIFICATION
In the risk identification phase, the organization should create an objective list of the risks taking into consideration a variety of factors, such as the nature of risk and changes in risk profile. The organization may use different techniques such as interviews, surveys, and auditing to increase reliability in the characterizations of the risk.

IMPLEMENTATION OF THE DUE DILIGENCE PROGRAM
OVERVIEW OF DUE DILIGENCE PROCESS
The implementation of the due diligence process will consist of the repetition of individual due diligence activities, combined and summarized to provide an overview of the whole supply chain in the scope of the due diligence program.

INITIATING DUE DILIGENCE ACTIVITY
The audit team should first establish a dialogue with the organization’s compliance department and confirm communication channels, including:
• Confirm authority to conduct due diligence activity;
• Provide relevant information on the due diligence process (e.g., scope, criteria, methods, teams, schedule);
• Request access to relevant information to conduct due diligence activity;
• Determine applicable statutory and regulatory requirements;
• Confirm management and treatment of information, especially the management of confidentiality;
• Confirm arrangements including schedule, access, health and safety, and security;
• Confirm attendance of observers where applicable;
• Determine relevant areas of interest or concern with the organization subjected to due diligence activity

NONCONFORMITY MANAGEMENT
In this section, nonconformity refers to findings identified during the due diligence process or to a nonconformity arising from the process itself. Nonconformity arising from the process itself may include:
• Failure to perform due diligence as agreed;
• Unresolved diverging opinions on the outcome of the due diligence process;
• Reported Impartiality or ethical issues occurring during due diligence;
• Competences issues identified during the diligence process; and • Breach of confidentiality or information security occurring the due diligence process.
The organization should establish a process, including reporting, investigating, and taking actions to determine and manage nonconformities. When a nonconformity occurs during due diligence, the organization should as applicable:
• React timely to control the nonconformity;
• Take actions as applicable to correct the nonconformity and deal with the consequence; and
• Take actions to prevent reoccurrence of the nonconformity.

Click to download:

Posted in China, Solar | Tagged , , , , , , , | Leave a comment

Global Renewables Outlook: Energy transformation 2050

A WIDENING GAP BETWEEN RHETORIC AND ACTION

The gap between aspiration and the reality in tackling climate change remains as significant as ever, despite mounting evidence of the harm that climate change is causing. Negative effects of climate change are becoming more evident year by year (NASA, WMO, 2020). Yet global energy-related CO2 emissions, despite levelling off periodically, have risen by 1% per year on average over the last decade.

The changing nature of energy and fossil-fuel use
Energy-related CO2 emissions, energy demand and fossil-fuel outlook

PLANNING FOR THE LONG TERM
To achieve the Energy Transformation Scenario, energy-related CO2 emissions need to fall by 3.8% per year on average until 2050. Annual energy-related CO2 emissions would need to decline by 70% below today’s level by 2050. In the Transforming Energy Scenario by 2050, over half of the necessary reductions in emissions come from renewable energy (both power and end use), followed by around one-quarter coming from energy efficiency (see Figure S.7). When including direct and indirect electrification (such as green hydrogen and technologies like EVs), the total reductions increase to over 90% of what is required. The Deeper Decarbonisation Perspective then describes how reducing the remaining emissions to zero – over two-thirds of which come from challenging sectors such as aviation, shipping and heavy industry – will require additional renewable energy, electrification (both direct use and green hydrogen), energy efficiency, carbon management, and other structural and habit changes. Outside the energy sector, efforts also are needed to reduce emissions from non-energy use, emissions from land use, land-use change and forestry (LULUCF), and fugitive gases in the coal, oil and gas industries.

Figure S.7. The bulk of emission reductions: Renewables and efficiency
Energy-related CO2 emissions, 2010-2050

Drivers for the energy transformation
Climate change has become a major concern of this century. The urgent response to
that concern is an energy transformation that swiftly reduces the carbon emissions
that cause climate change. The Paris Agreement establishes a clear goal to limit the
increase of global temperature to “well below” 2 degrees Celsius (°C), and ideally to
1.5 °C, compared to pre-industrial levels, by this century. To realise this climate target,
a profound transformation of the global energy landscape is essential.

Pressing needs and attractive opportunities
Key drivers for the energy transformation

A widening gap between reality and what is needed
To set the world on a pathway towards meeting the aims of the Paris Agreement, energy-related carbon dioxide (CO2) emissions need to be reduced by a minimum of 3.8% per year from now until 2050, with continued reductions thereafter. However, trends over the past five years show annual growth in CO2 emissions of 1.3%. If this pace were maintained, the planet’s carbon budget would be largely exhausted by 2030, setting the planet on track for a temperature increase of more than 3°C above pre-industrial levels. This case cannot be considered as a climate-compatible scenario, as many governments, by signing the Paris Agreement in 2015, committed to reducing their emissions. Figure 1.4 shows the possible paths of annual energy-related CO2 emissions and reductions as per three scenarios: the Baseline Energy Scenario (BES) (indicated by the orange line); the Planned Energy Scenario (PES) (indicated by the yellow line); and IRENA’s energy transformation pathway – the Transforming Energy Scenario (TES) (indicated by the blue line).

Renewables, energy efficiency, electric vehicles and hydrogen can
provide bulk of necessary emissions reductions by 2050
Annual energy-related CO2 emissions in the Baseline Energy Scenario,
the Planned Energy Scenario and the Transforming Energy Scenario, and
mitigation contributions by technology in the three scenarios, 2010-2050

STEPPING FORWARD TO A DIGITALISED AND INTERCONNECTED WORLD
Digitalisation is a key amplifier of the power sector transformation, enabling the management of large amounts of data and optimising increasingly complex power systems. Our increasingly digitalised world is becoming ever more interconnected. The growing importance of digitalisation in the power sector is partially a consequence of increasing decentralisation (e.g., increased deployment of power generators at the distribution level) and electrification (e.g., the emergence of EVs, heat pumps and electric boilers). Recent analysis from IRENA shows how all these new small and distributed assets on the supply and demand sides are adding complexity to the system and making monitoring, management and control crucial for the success of the energy transition.

Internet of Things (IoT) as a driver for power system transformation
Internet of Things in context: Smart grids connecting smart devices from both the demand
and supply sides

Outlook for 2030 and NDC formulation
National Determined Contributions (NDCs) are the backbone of the Paris Agreement, signed by the 197 member states of the United Nations Framework Convention on Climate Change (UNFCCC) in 2015. NDCs include mitigation actions, and in most cases adaptation actions as well, that a country can put in place to stay in line with the agreement. The year 2020 represents a significant milestone in global efforts to cut energy-related CO2 emissions. As countries review and update their NDCs, they could simultaneously raise their ambitions to scale up renewable energy. The new NDC round offers an important chance to strengthen targets for renewables in the power sector and beyond. Present NDC pledges are far from sufficient to meet climate goals. For example, within the power sector, current NDC power targets overlook 59% of the potential for renewable electricity deployment in line with the Paris Agreement by 2030. For a climate-compatible transformation, more extensive deployment of renewable generation capacity, amounting to 7.7 terawatts (TW) (or 3.3 times current global capacity), could be achieved cost effectively and would bring considerable socioeconomic benefits (Figure 1.18).

Figure 1.18 Nationally Determined Contributions: Currently insufficient
to meet Paris Agreement climate goals
Renewable energy installed capacity in different scenarios

GLOBAL SOCIOECONOMIC IMPACT

Renewable energy technologies are at the heart of the needed energy transition. The roadmap for the transition points to a more sustainable energy system and lays the foundation for achieving socio-economic development. The energy transition discourse has thus far been largely technology-oriented and disconnected from the socio-economic aspects upon which it is built and its long-term sustainability depends. A true and complete transition includes both the energy and the socioeconomic system transition, and their interlinkages. Therefore, a wider picture is needed, viewing energy and the economy as part of a holistic system.

Close interplay between the energy sector and the economy
Sketching the socio-economic footprint of the transition

Gross domestic product
GDP is the most commonly used indicator for income and growth. In line with earlier IRENA estimates (IRENA, 2019a), the Transforming Energy Scenario boosts global GDP in 2050 by 2.4% over the Planned Energy Scenario. The cumulative gain from 2019 to 2050 amounts to USD 98 trillion.4 The gain is influenced by several drivers in the global economy and is illustrated in Figure 2.8. The investment driver contributes most heavily to the gain during the first years of the transition, remaining positive but with a relatively low impact thereafter. The trade driver makes marginal contributions to global GDP gains over the Planned Energy Scenario, given the intrinsic requirement of global trade being balanced in normal terms. The largest share of the positive global GDP results is explained by changes in consumer spending in response to changes in fiscal policy considered in this analysis.

Figure 2.8 Transforming Energy Scenario will boost global GDP
Difference in global GDP between Transforming Energy Scenario
and Planned Energy Scenario

REGIONAL ENERGY TR ANSFORMATIONS: TECHNO-ECONOMIC CONTEXT

These regions were defined based on geographical grouping, without consideration of socio-economic, political or cultural aspects. Any regional split tends to be somewhat arbitrary and could hide important differences among countries that affect the implications of the energy transformation in each case. Even so, examining IRENA’s energy transformation results at the regional level can offer valuable insights. As the sections that follow demonstrate, important distinctions exist between regions.

Context and characteristics

World population growth: From 7.5 billion today to over 9.7 billion by 2050
Expected population trends from 2018 to 2050

Priorities and drivers
Figure 3.9 outlines key indicators showing the status of the energy transition in each region. The indicators reveal how each region has drivers for embracing the transformation, ranging from energy security, to emissions reductions and better air quality, to universalisation of energy access and economic development. This section provides more detail about the characteristics of three clusters of regions and some of the measures, technologies and changes that are needed to accelerate the energy transformation.

Figure 3.9 Planned Energy Scenario: Different prospects for each region
Status and key indicators for the energy transition in different regions in the Planned
Energy Scenario

REGIONAL SOCIO-ECONOMIC IMPACTS

Socio-economic footprints provide essential insights for transition planning and policy making at the global level (Chapter 2), at the regional level (Chapter 4) and the country level (IRENA, 2020a and forthcoming country studies). This chapter presents socio-economic footprints of the world’s ten regions analysed in Chapter 3. The first section briefly describes the socio-economic context underlying the analysis. The second presents the results of the socio-economic footprint of the energy transition for each region. Some of the policy implications are presented in the concluding section, but also in Chapter 6, where the contours of a policy framework for a just energy transition are considered as part of a broader discussion of the
transformative decarbonisation of societies. GDP, employment and welfare effects are determined macro-econometrically, using the E3ME simulation model.1 The main socio-economic variables used to contextualise the analysis include the regional distribution of population, employment and GDP at the beginning of the transition, as well as the evolution of each variable over time. Figure 4.1 shows the regional distribution of population, economy-wide employment and GDP, ranked in decreasing order of population. More than half of global GDP arises from the European Union and North America. Sub-Saharan Africa, Southeast Asia, and Oceania each account for small shares of global GDP. Shares of jobs in global employment are highest in Asia, which also account for the highest share of population.

Figure 4.1 Some regions feature prominently in population and job distribution,
others in GDP distribution
Regional shares of global population, economy-wide employment and GDP in 2019

Socio-economic indicators of the energy transition: Jobs
The energy transition affects different sectors and supply chains of the economy, induces technological changes and shifts investment – all with significant effects on employment, and hence on people’s livelihoods. The most obvious changes will occur in the energy sector, with more jobs in renewables, energy efficiency and energy flexibility, and fewer jobs in fossil fuels. Here, the regional distribution of natural resources, both conventional and renewable, plays a role as important as that of manufacturing capacities and services.

Renewable energy jobs
About 42 million people will work in manufacturing, installing, operating and maintaining renewable energy systems in 2050 under the Transforming Energy Scenario, most in solar energy, followed by bioenergy and wind energy (see Figure 4.7). The greatest number of these jobs will be created in Asia: East Asia (36%), Southeast Asia (16%) and the rest of Asia (12%). The Americas rank second (15%), evenly split between North America and Latin America and the Caribbean. Europe holds a 10% share (with the European Union accounting for 6% and the rest of Europe for 4%). The shares for Sub-Saharan Africa and the MENA region are 5% each.

Figure 4.7 An estimated 42 million jobs in renewables: Regional distribution
Renewable energy jobs in 2050 under the Transforming Energy Scenario,
by region (in millions)

GETTING TO ZERO

Ensuring that global temperatures stop rising will require that, by the second half of this century, emissions eventually reach zero, or net zero. Additional mitigation measures will therefore be needed beyond what was presented earlier in the Transforming Energy Scenario. This chapter considers these increased mitigation needs and, with the Deeper Decarbonisation Perspective (DDP), presents enhancements to that scenario showing what more could be done.

Getting to zero: Technology options and costs
Carbon dioxide emissions represent three-quarters of greenhouse gas emissions with energy related CO2 (combustion of fossil fuels) and industrial process emissions making up over 80% of CO2 emissions and the remainder coming from land use, landuse change and forestry (LULUCF). Efforts are therefore needed across the energy, industrial and land-use sectors to reduce emissions. Significant efforts are needed in certain sectors, such as in industry and transport, that are sometimes referred to as hard-to-decarbonise” or “hard-to-abate” sectors.

Industry and transport: The bulk of remaining emissions in 2050
Energy-related and industrial process CO2 emissions in the Transforming
Energy Scenario, 2050

There are two general approaches to reducing emissions to zero: completely decarbonising all energy and industrial processes so that no CO2 is emitted at all (the “zero” emissions approach), and offsetting any remaining emissions through the use of CDR to achieve net-zero emissions (the “net-zero” emissions approach). Examples of CDR include reforestation, afforestation, direct air capture, enhanced weathering and bioenergy CCS.

Challenging sectors: Transport
Transport accounts for around one-quarter of global energy-related CO2 emissions. The path forward to provide transport services while reducing CO2 emissions is becoming clear for some, but not all, transport modes. For light-duty vehicles (cars, sport-utility vehicles and small trucks), battery electric vehicles have shown dramatic improvements in range (kilometres per charge), cost and market share. The path forward here is clear: electrify the light-duty vehicle fleet and provide that electricity from renewable sources. For other modes, the path is less clear, although there is significant untapped potential for sustainable liquid biofuels. Additional solutions will be needed for road freight transport, aviation and shipping. Potential solutions in
these transport modes are described in the following sub-sections.

TOWARDS THE TR ANSFORMATIVE DECARBONISATION OF SOCIETIES

A transformative transition
As countries around the world grapple with the challenge of transforming an energy system – and by extension a global economy – that relies on polluting conventional energy resources, notions of a “Green New Deal” are receiving growing attention. Both the name and the underlying intent are inspired by the massive mobilisation of resources and institutional capacity that took place under the New Deal launched by U.S. President Franklin Delano Roosevelt in the 1930s. The original New Deal entailed fiscal, monetary and banking reforms; public works; and a series of regulatory measures adopted in response to the devastating global financial crisis known as the Great Depression.

The global Green New Deal: At the heart of solutions to achieve social,
economic and environmental objectives
The broader objectives of a Green New Deal

Overcoming challenges
Done right, the energy transition not only avoids the use of polluting fuels but creates a vibrant, climate-resilient economy with benefits for all. IRENA’s analysis shows that its transition pathway offers strong employment and welfare gains. Despite positive outcomes at the global level, IRENA’s analysis also indicates that the energy transition will generate highly diverse outcomes for regions and countries (see Chapter 4). Individual countries embark on the transition from different starting points defined by their existing socio-economic structures. Their pathways are also strongly influenced by their level of policy ambition. Two sets of conditions influence the ability of countries to derive benefits from the energy transition: (1) the depth, strength and diversity of their national supply chains; and (2) varying degrees of dependency on fossil fuels and other commodities, technologies and trade patterns (see Figure 6.2).

Figure 6.2 Diverse energy transition outcomes for regions and countries
Structural elements that shape the outcomes of the energy transition

Foundations for success: Financial mobilisation, policy cohesion and international co-operation
The global energy transition requires an unprecedented mobilisation of financial resources, driven by the unwavering commitment of governments, the private sector and civil society. Governments must adopt a wide array of policies to strengthen public resolve and ensure that no one is left behind. As the massive financial resources mobilised to counter the 2008 economic crisis demonstrated, countries and societies are collectively capable of such ambitious undertakings. The uncharted territory of COVID-19 and its aftermath presents now another test of our shared resolve for a better future.

Click to download:

Posted in Global Warming, Renewables | Tagged , , , , | Leave a comment

COAL COST CROSSOVER 2.0 – New solar and wind cheaper than 80% of existing coal in the US, report finds

EXECUTIVE SUMMARY
Coal generation is at a crossroads in the United States, or more precisely at a “cost crossover.” Due to rapid recent cost declines for wind and solar, the combined fuel, maintenance, and other costs of most existing coal-fired power plants are now higher than the all-in costs of new
wind or solar projects. This report compares the economics of each coal plant in the U.S. against the expected economics of potential new wind and solar plants nearby, using publicly available data. In 2019, 239 gigawatts (GW) of coal capacity was online in the U.S. Our research finds that in 2020, 72 percent of that capacity, or 166 GW, was either uneconomic compared to
local wind or solar or slated for retirement within five years. Out of the 235 plants in the U.S. coal fleet, 182 plants, or 80 percent, are uneconomic or already retiring.

In the last two years, the cost of renewables has fallen even faster than the National Renewable
Energy Laboratory’s forecast in its 2018 Annual Technology Baseline, and faster than predicted in the original “Coal Cost Crossover” report, which was prepared in partnership with Vibrant Clean Energy in 2019. In other words, the coal cost crossover trend continues to accelerate.
As pressure on the existing coal fleet continues to build, policymakers should seize the opportunity today to improve consumer, public health, and climate outcomes. Policies informed by cost analysis of coal and renewables and focused on competitive procurement and coal asset securitization can enable a transition that more effectively balances utility, consumer, environmental, equity, and community interests. Immense savings are available across the country, with ample opportunities to reinvest regionally in replacement clean energy portfolios.


WIND AND SOLAR LCOE
We reviewed onshore wind and utility-scale solar resources using outputs from the Regional Energy Deployment System (ReEDS) model, developed by NREL.2 ReEDS provides a detailed look at the North American electric power sector, including generation, transmission, and end-use technologies. Using ReEDS, we generated LCOE values (which are all-in estimates of the cost of energy output in megawatt-hours, taking into account the entire capital expenditure, operations, and maintenance costs) for onshore wind and utility-scale solar.3 We also used the 2020 values from the 2020 edition of the NREL Annual Technology Baseline to gather inputs for the ReEDS model, including capital cost and performance.4 Our LCOE values are evaluated within ReEDs regions, which we describe in greater detail below. After providing context for the geographic regions we assessed, we lay out how we calculated LCOEs and coal going-forward cost, and how we determined whether solar or wind could entirely displace annual coal generation at a given plant cost effectively.

UNDERSTANDING WIND AND SOLAR REGIONS
Within the contiguous U.S., ReEDS defines 134 “balancing areas.”i Within those balancing areas, there are 356 further subdivided regions, called resource supply regions, which characterize the wind resource quality and supply. Balancing areas never cross state lines nor straddle multiple regional transmission operators, and they roughly (but not completely) correspond to existing utility service territories and balancing area authorities.ii The utility-scale photovoltaic solar resource information is available at the “balancing area” level, and the utility-scale onshore wind resource information is available at the “resource supply region” level. The differing spatial resolution of these two categories is intended to reflect the granularity of the quality and quantity differences of specific resource supplies.

COAL GOING-FORWARD COSTS
We developed an estimate of the going-forward costs of running U.S. coal plants using publicly available data from the U.S. Department of Energy’s Energy Information Agency (EIA), the Federal Energy Regulatory Commission (FERC), and the U.S. Environmental Protection Agency (EPA). We compiled a list of 235 U.S. coal plants operated by utilities and independent power producers, excluding plants used for combined heat and power, with a tiered system indicating our degree of confidence in each plant’s particular estimate. The going-forward cost estimate for each coal plant in our master list is the sum of three principal components: cost of fuel, operations and maintenance costs, and going-forward costs for capital investments needed to continue operating the plant.

COMPARING RENEWABLES LCOE TO COAL GOING-FORWARD COSTS
Using the calculated plant-level weighted average LCOEs for wind and solar and plant-level goingforward coal cost, we compare the three values to determine to what extent the U.S. coal fleet is currently “uneconomic.” We use “uneconomic” in the sense that it would be more costly to continue operating existing coal plants compared to building new nearby wind or solar plants to fully displace the current annual generation from those coal plants.

COAL TO RENEWABLES COST CROSSOVER FINDINGS RENEWABLES AND COAL COST COMPARISON
Our top-level findings include:

  1. Of existing U.S. coal capacity, 72 percent is more costly to operate than new nearby wind
    and solar, or is slated to retire by 2025.
  2. Of existing U.S. coal plants, 80 percent are more costly to operate than new nearby wind
    and solar, or are slated to retire by 2025.

have worsened substantially since our original analysis, which found that, as of 2018, 62 percent of coal capacity was uneconomic compared to local wind or solar. In addition, an estimated 16 GW of coal capacity has retired since the 2018 analysis. Our original analysis projected uneconomic coal capacity in the U.S. to be 77 percent by 2025—a pace that was almost reached in 2020.

Our current analysis focused on whether solar or wind could entirely displace annual coal
generation at a given plant cost effectively. The maps below show how, in many cases, solar and wind are both economically competitive options, although there can still be large cost differentials between the two clean resources even when they both beat coal on cost. That said, to displace uneconomic coal, policymakers should consider a portfolio of clean resources, including storage and demand-side resources, that is more varied than either entirely utility-scale solar or entirely utility-scale onshore wind projects.

PUBLIC HEALTH & CLIMATE IMPACTS
Coal plants emit a host of emissions. We collaborated with the Catalyst Cooperative to match plant boilers with the coal plant generators included in each coal plant in our dataset. We then collected emissions data from EPA’s 2019 eGRID database for each boiler and aggregated these figures at the coal fleet level.6 The database isn’t comprehensive, but it does provide detailed information on carbon dioxide (CO2), nitrogen oxides (NOx), and sulfur dioxide (SO2) emissions.

Modeling from RMI indicates that, more often than not, replacing coal energy with wind or solar is unlikely to negatively affect system reliability. More than 50 percent of coal plants in RMI’s 2021 analysis could be economically replaced by renewables, allowing the balancing authority to still meet its reserve margin.14 Almost half the plants in our analysis, representing 39 percent of the megawatt-hours, had a going-forward cost more than 25 percent greater than wind or solar LCOEs, indicating room to complement these resources with storage, demand response, and energy efficiency to amplify their contributions to reliability.

The wider the gap becomes between the marginal economics of coal versus wind and solar, the more coal plants will have to depend on their perceived capacity value to recover costs. Their capacity factors may drop even more, widening the gap and opening a window for dedicated resources like demand response, storage, and existing flexible resources to fill their niche. We are already seeing combined renewables-plus-storage plants win competitive solicitations and capture some of this value in high solar- and wind-potential regions (empirically,this appearsto add roughly $4-8/MWh to renewable energy costs). 15 We expect the trend to continue as battery prices slide down the learning curve.

POLICY RECOMMENDATIONS
Coal generation has been on a secular downward trend, declining 50 percent since its peak in 2011. Simultaneously, renewable energy costs are plummeting. Our analysis indicates that the coal decline will continue and policymakers should seize this opportunity for consumers, public health, and climate. Policies informed by cost analysis of coal and renewables and focused on competitive procurement and coal asset securitization can enable a transition that more effectively balances utility, consumer, environmental, equity, and community interests.

Click to download:

Posted in Power Generation, Renewables, Solar, Wind | Tagged , , , , , , | Leave a comment

Energy subsidies: Evolution in the global energy transformation to 2050

SUBSIDIES, PRIVILEGES, UNPRICED EXTERNALITIES AND THE ENERGY TRANSITION

In order to meet the Paris Agreement objective that the global temperature rise be kept to “well below 2 °C”, the global energy sector requires nothing short of a complete transformation, during the coming decades. At the same time, while the political will to avoid
dangerous climate change demonstrated by the countries of the world in signing the Paris Agreement is welcome, as the IPCC Special Report on “Global Warming of 1.5 °C” makes clear, time is of the essence.

Global energy sector carbon-dioxide emissions in the Reference and REmap Cases,
2010–2050

The IRENA analysis demonstrates that renewable energy technologies are increasingly cost-competitive in many geographies and markets and that the energy transition will yield significant economic benefits New-build renewable power generation technologies, increasingly without subsidies, will even displace existing coal, or nuclear power plants. This is because their total lifetime costs are lower than these older plants’ variable operating costs. This trend implies that the energy transition is both ecologically and economically sustainable.

WHAT PURPOSE DO SUBSIDIES SERVE AND HOW TO DEFINE THEM?
Subsidies can arise as the result of deliberate interventions by governments, or as the unintended consequences of policy decisions, or from market failures. Energy subsidies are not necessarily bad per se, but this depends on how and why they are being implemented.2
What matters are the objectives being pursued and how the subsidies may interact with other
policy priorities.

Negative externalities and their impact on supply and deman

Unfortunately, there has been little progress in ensuring that fossil fuels pay the full cost of their negative externalities, whether from local or global pollutants. In the absence of taxes or quotas set at optimal levels (to create a market), policy makers have often looked for alternative options to deploy renewables to address market failures in the energy sector
and unlock the dynamic economies of scale many renewable technologies exhibit. The use of subsidies in this context can be seen as governments trying to ensure that the market operates more efficiently than today.

Different definitions of energy subsidies Today, there is no systematically applied, standardised
definition of what an energy sector subsidy is, despite the prevalence of subsidies in the energy system. Even without this uncertainty around definitions, given the breadth and complexity of support given to different energy sub-sectors or fuels, calculating subsidy levels
or unpriced externalities can be difficult (Sovacool, 2017).

Different definitions of energy subsidies and their strengths and weaknesses

Expanding on definitions: Categorising and calculating subsidy levels
Although the differences in definitions can explain some of the differences in subsidy estimates, what is clear is that the focus of different institutions can not only affect their decision about what methodology to use in the calculation of subsidies, but also what types
of policies are included in their analysis. This can be due to:
• The policy question being addressed by the institution.
• Fundamental differences in the conception of what policies represent energy sector subsidies.
• Data limitations, or limits in the institutional resources available for subsidy analysis.

A typology of global energy subsidies

ENERGY SECTOR SUBSIDY ESTIMATE

The present part of the analysis examines the levels of energy sector subsidy estimates made by some of the major institutions that have produced reports on global subsidy levels. The focus is on comprehensive studies that look at global subsidy levels. This is in order to ensure that the numbers presented are as comparable as possible. There are, however, a number of important regional subsidy estimates, particularly for fossil fuels, that can in some cases provide useful detail to complement or inform these global estimates. Notable examples
include fossil and renewable energy subsidies in Europe (Trinomics, 2018; and Gençsü and Zerzawy, 2017), fossil-fuel subsidies in Asia (ADB, 2016), and federal tax subsidies in the United States (CBO, 2016; and CRS, 2017). There is also a significant body of analysis and data at a country level compiled by the International Institute for Sustainable Development’s Global Subsidies Initiative.

RENEWABLE ENERGY SUBSIDIES
To-date, analysis of energy sector subsidies at a global level has predominantly focused on environmentally harmful subsidies to fossil fuels,13 given their dominance in the global energy system and total energy subsidies. There are therefore fewer estimates of the financial support given to renewables, calculated on a comprehensive and comparable basis. As a result, available data are often partial, collected on a different basis and difficult to compare. The exceptions are the data in the IEA’s World Energy Outlook, which takes a price-gap approach to estimating renewable energy subsidies, and the analysis.

Selected country and regional estimates of renewable energy subsidies in 2017

To give a few examples, data is available for: the German electricity surcharge that funds the deployment of renewable power generation 14 (calculated using a price-gap methodology that also includes some administrative aspects); the United Kingdom’s Renewables Obligation Certificates, Feed-in-Tariffs (FiTs), Contracts for Differences (CfDs) and Renewable Heat Incentive (BEIS, 2016 and 2018); and the United States’ support through the production and investment tax credits for wind and solar (Congressional Research Service, 2017). There are also the regional subsidy estimates that have been mentioned. All of these sources usually apply either a price-gap or inventory of programme costs methodology, making comparability
and completeness an issue. For attaining an order of magnitude of what total subsidies may look like globally to renewable energy, however, this is a useful starting point.

The price-gap approach has the advantage of capturing the subsidy rate required to bridge the gap between a renewable technology and the incumbent. Its accuracy depends, however, on choosing the right reference price and in being able to accurately calculate the cost of energy or service delivered by the 27 For instance, by 2015 state-level rebates for solar PV systems had fallen from between USD 1 to USD 4/W by state in 2010 to between USD 0 to USD 0.8/W in 2015 (LBNL, 2018). renewable technology. Neither of these tasks are trivial,
particularly for renewables, given that site-specific factors can greatly impact costs. As a result, the price gap approach is at best an imperfect measure, but is a useful and efficient way of trying to capture policies that reduce the price required for a renewable project to be competitive.

Figure 4: IRENA’s global subsidy estimates for renewable power generation and biofuels by
country/region, 2017

On this basis IRENA has estimated the supply-side subsidies for renewable energy to have been around USD 167 billion in 2017, with total subsidies to renewable power generation of around USD 128 billion in 2015 and transport sector subsidies of USD 38 billion (Figure 4).

Figure 5: IRENA subsidy estimates for renewable power generation by
country/region and technology, 2017

Focusing on the renewable power generation technologies receiving support by country/region (Figure 5) reveals that in 2017, Japan had the highest share (77 %) of support going to solar PV (which is also the highest share for one technology). This reflects the overwhelming dominance of solar PV in recent deployment (IRENA, 2018b). Of the EU’s USD 78 billion subsidies for renewable power generation in 2017, 40 % supported solar PV, 23 % supported onshore wind, 22 % went to bioenergy power generation, 7 % to offshore wind, 5 % to “hydropower, geothermal and others” and 3 % to CSP.

Figure 6: IRENA subsidy estimates for biofuels for transport by country/region and fuel, 2017

Subsidies for biofuels are less concentrated in one region than those for power generation. The United States, with an estimated USD 14.1 billion in subsidies for biofuels, accounted for 37 % of total biofuels subsidies in 2017. As the EU accounted for around 30 % (USD 11.4 billion), the United States and the EU combined therefore accounted for around two-thirds of the total, while India accounted for 2 % (USD 0.9 billion) and China and Japan for 1 % each. The
rest of the world accounted for 30 % (USD 11.4 billion).

Methodology matters: Fossil-fuel subsidies in Germany
The latitude for interpretation in some subsidy definitions, in combination with the different possible calculation methodologies, can have a large impact on country-level subsidy estimates. Subsidy estimates must therefore be clearly documented to allow comparisons to be made.

Figure 7: Subsidies to fossil fuels in Germany from different sources, 2014/2016

This is not the largest estimated of fossil-fuel subsidies in Germany, however. Separate analysis conducted for Greenpeace identified the even higher 2016 level of USD 53 billion (Zerzawy, 2017). Most of the difference results from the inclusion of value added tax exemptions for international flights and tax deductions possible by individuals for travel to work by vehicle.
Finally, the IMF estimates Germany’s “pre-tax subsidies and forgone tax revenue” at USD 10.8 billion in 2015, similar to the German self-assessment, but with total subsidies of USD 74 billion. The vast majority of these subsidies come from externalities, with global warming
accounting for USD 22 billion and local air pollution for USD 34 billion.

NUCLEAR POWER SUBSIDIES
Comprehensive global estimates of the subsidies received by the nuclear power sector are currently missing from the total energy sector subsidies debate for incumbent technologies. Indeed, if the situation in terms of cataloguing global fossil-fuel subsidies still leaves much to be desired, the state of knowledge about nuclear is even worse. In part, this is because many nuclear power subsidies are more obscure and indirect than for renewables and fossil fuels and the absence of direct cash transfers makes it harder to estimate their value.

Table 7: Subsidy categories and sources for nuclear power

TOTAL ENERGY SUBSIDIES IN 2017 AND THEIR EVOLUTION TO 2050: THE REMAP CASE

This section brings together the IRENA estimates for subsidies for renewables and the adjusted combined IEA/OECD fossil-fuel subsidies, as outlined in the previous sections. Combining the estimates of fossil fuel, renewable and nuclear power subsidies yields an estimate of total direct energy sector subsidies for 2017 of USD 634 billion (Figure 10). The total is dominated by the subsidies received by fossil fuels, which account for 70 % (USD 447 billion). Subsidies
to renewable power generation technologies account for around 20 % of total energy sector subsidies (USD 128 billion), biofuels for 6 % (USD 38 billion) and nuclear for at least 3 % (USD 21 billion), but potentially more, as already noted.

Figure 10: Total energy sector subsidies by fuel/source, 2017

TOTAL ENERGY SECTOR SUBSIDIES TO 2050
IRENA has used the analysis in the REmap Case (IRENA, 2019a), in conjunction with the current
estimates of total energy sector subsidies in 2017, to analyse how total energy sector subsidies out to 2050 might evolve if the world is to stay on track to achieve the Paris Agreement climate goal of restricting global warming to 2 °C or less.

Figure 12: Key energy sector indicators in the REmap Case to 2050

Figure 12 provides an overview of the evolution of some of the key energy sector indicators out to 2050 in the REmap Case that are part of the underlying drivers of the evolution in energy sector subsidies outlined. Although subsidies may provide only one metric by which the transition can be measured, policy makers could benefit from understanding how subsidy needs in the energy sector could evolve over the period until 2050.

Click to download:

Posted in Biomass, CSP, Hydro, PV, Renewables, Solar | Tagged , , , , , , , , | Leave a comment

Tracking SDG 7: The Energy Progress Report (2020)

EXECUTIVE SUMMARY

The 2020 edition of Tracking SDG 7: The Energy Progress Report monitors and assesses attainments in the global quest for universal access to affordable, reliable, sustainable, and modern energy by 2030. The latest available data and select energy scenarios are set forth in this year’s report, which finds that although the world continues to advance toward SDG 7, its efforts fall well short of the scale required to reach the goal by 2030.

ACCESS TO ELECTRICITY

The share of the global population with access to electricity increased from 83 percent in 2010 to 90 percent in 2018, enabling more than a billion people to gain access during the period. The population still without access to electricity was 789 million in 2018, down from 1.2 billion in 2010.The global advance of electrification accelerated slightly in recent years, rising from an average of 0.77 percentage points annually between 2010 and 2016 (127 million people/year) to 0.82 percentage points between 2016 and 2018 (136 million people/year). These numbers nevertheless fall short of the gains needed to achieve the goal of universal access to electricity by 2030. Annual increases of at least 0.87 percentage points would be required to meet the target. Under current and planned policies before the start of the COVID-19 crisis, it is estimated that about 620 million people will remain without access in 2030, 85 percent of them in Sub-Saharan Africa.

Share of population with access to electricity in 2018
The 20 countries with the largest access deficit, 2010–18

RENEWABLE ENERGY

The share of renewable energy in TFEC reached 17.3 percent in 2017, up from 17.2 percent in 2016 and 16.3 percent in 2010).3 This indicates that global use of renewables has grown faster (at 2.5 percent in 2017) than overall global energy consumption (1.8 percent in 2017), extending a trend seen since 2011. The growth of renewables is driven primarily by increased consumption of modern renewables (that is, renewables other than traditional uses of biomass). Modern renewables commanded a 10.5 percent share of TFEC in 2017, up from 10.3
percent in 2016 and 8.6 percent in 2010.

Renewable energy consumption by technology and share in total final energy consumption
(TFEC), 1990–2017

Important regional differences should be noted. Sub-Saharan Africa had by far the highest share of renewable energy in TFEC for 2017. However, reliance on traditional uses of biomass in the region accounts for almost 85 percent of its renewable energy consumption and, as already observed, is associated with adverse health and environmental effects. Owing to the extensive use of modern bioenergy across the power, heat, and transport sectors, in addition to the region’s reliance on hydropower to generate electricity, Latin America and the Caribbean had the largest share of modern renewables among all regions.

• Change in share of renewable energy in total final energy consumption between 2010
and 2017

ENERGY EFFICIENCY

Rates of improvement in global primary energy intensity (total primary energy supply per unit of gross domestic product) have fallen in the past few years, following a period of relative steady growth. Global primary energy intensity in 2017 was 5.01 megajoules per USD dollar, equivalent to a 1.7 percent rate of improvement since 2016, the lowest rate since 2010. Nevertheless, recent progress has been greater than historical trends, thanks in part to
a range of energy efficiency policies adopted around the world. The average annual rate of improvement in global primary energy intensity between 2010 and 2017 was 2.2 percent, more than the historical rate of 1.3 percent between 1990 and 2010. To reach the SDG 7.3 target (by doubling the historic improvement trend), the annual improvement to 2030 would need to average 3 percent in the years between 2017 and 2030.

Annual growth rate of primary energy intensity by period, target rate for 2017–30, and
potential for 2017–30 in IEA Sustainable Development Scenario

TRACKING PROGRESS ACROSS TARGETS: INDICATORS AND DATA

Each target is monitored using one or more proxy indicators, in line with the SDG framework devised by the UNSD.4 For example, progress in access is monitored both through the proportion of the population having access to electricity and the proportion relying primarily on clean fuels and technologies. Similarly, progress in energy efficiency is monitored through the energy intensity of the economy, measured in terms of primary energy and GDP.

POLICY INSIGHTS The world has a decade to meet the SDG 7 call for universal access to electricity. Now more than ever, efforts must be made to accelerate electrification in access-deficit countries. The covid-19 crisis has further accentuated the need for reliable, affordable access—in health institutions in particular, but also for water pumping, schools, and community resilience. Recent trends have shown, however, that it is hard to sustain the pace of electrification through to the last mile, or even the last few miles. Doing so requires commitment. In countries where the level of electrification remains low (e.g., the Sahel countries, the question is how to deliver affordable and reliable service at scale. In countries approaching universal access (e.g., India, Peru), the question is how to connect those hardest to reach.

Percentage of refugee households having access to on-grid electricity in selected
communities

ENERGIZING WOMEN
Access to electricity plays a critical role in poverty reduction for women and girls. Women’s employment and leisure will improve with increased access to electricity. Poor electricity supply was pinpointed as the biggest obstacle to growth by 25 percent of female-headed enterprises surveyed in Tanzania and 19 percent in Ghana. Statistical data from these countries show a positive relationship between the productive use of electricity and women’s economic empowerment. Use of electrical appliances allowed for diversification in products for sale and helped female entrepreneurs attract more customers (Wilson 2020). The provision of electric light amplifies time savings by increasing efficiency and adding flexibility in the scheduling of household tasks. Freeing up women’s time is a prerequisite for investments in their education and life choices, encouraging them to seize economic opportunities and participate in economic, political, and social life.

ACCESS TO CLEAN FUELS AND TECHNOLOGIES FOR COOKING

In 2018, 63 percent (56–68) of the global population had access to clean cooking fuels and technologies, comprising electric, liquefied petroleum gas (LPG), natural gas, biogas, solar, and alcohol-fuel stoves. (Technical recommendations defining what can be considered “clean” fuels and technologies are set out in WHO guidelines for indoor air quality: household fuel combustion (WHO 2014). Yet there remain some 2. 8 billion (2.4, 3.3) people who rely on polluting fuels and technologies for cooking, including traditional stoves paired with charcoal, coal, crop waste, dung, kerosene, and wood. Due to limitations in the underlying data, analyses use types of cooking fuel rather than cookstove and fuel combinations.

The global population with access to clean cooking (in percentages)

ACCESS AND POPULATION
The global access rate to clean cooking fuels and technologies reached 63 percent (56–68) in 2018. As seen in Figure 2.5, the access rate has been steadily rising between 2000 and 2018, with an annualized increase in access to clean cooking of 0.8pp (–0.2, 1.7) between 2010 and 2018. As shown in Figure 2.6, progress in access has decelerated since 2012, dropping from just below 0.8pp per year between 2000 and 2015 to 0.7pp from 2017 to 2018. Even discounting potential slowing of progress, such increases are not enough to reach SDG target 7.1.2 by 2030. Moreover, as seen in previous years, population growth continues to outpace the annual increase in the number of people with access to clean fuel and technologies in Sub-Saharan Africa: Figure 2.7 shows the annualized increase in the number of people with access to clean fuels and technologies (orange), compared to the annualized population increase (green), by region, over the period 2014–18.

Change over time in the absolute number of people (left axis) and percentage of the global
population (right axis) with access to clean cooking

THE ACCESS DEFICIT
While the human cost from polluting cooking is gradually easing in most regions, the trend is being overtaken by alarming population increases in Sub-Saharan Africa: On a global scale, gains in the percentage of population having access to clean cooking have been matched by population growth. These developments have caused a decades-long stagnation in the numbers of people without access to clean cooking, referred to here as the “access deficit.” Estimates suggest this number has hardly deviated from 3 billion people in any year since 2000, as illustrated in, with the 2018 estimate of 2.8 billion people (2.4, 3.3) being equal to the 1990 value of 2.8 billion people (2.4, 3.1).

Access deficits by region (population without access to clean fuels and technologies),
2000–18

POLICY INSIGHTS
Lack of access to clean fuels and technologies for cooking contributes to 4 million deaths each year in low and middle-income countries. It has been linked to heart disease, stroke, chronic obstructive pulmonary disease, pneumonia, adverse pregnancy outcomes, and cancer. This pollution is not restricted, however, to the household environment alone, as it contributes as well to localized pollution, disrupting regional environments. Household air pollution affects climate change: cooking and heating account for some 25 percent of black carbon emissions
worldwide (Bond and others 2013), and around 30 percent of the wood fuel harvested globally is unsustainable, which results in climate-damaging emissions equivalent to 2 percent of emissions worldwide (Bailis and others 2015).

Percentages of girls and boys who gather wood and water22 among all children in a given
country, by WHO region, for the period 2010–17

RENEWABLE ENERGY

LOOKING BEYOND THE MAIN INDICATORS
25 “End use” refers to the service for which energy is consumed. The services are classified into three categories: electricity end uses, transport end uses, and heating. For the sake of simplicity, the latter is referred to in this report as “heat.” A fraction of electricity end uses overlaps with heat, as some electricity is consumed to produce heat. In this report, however, renewable electricity consumed to produce heat is accounted for under the electricity
end use. Heat refers to the amount of non electric energy consumed for heating in industry and other sectors. It is not equivalent to the final energy end use. Renewable energy has three main end uses: electricity, transport, and heat.25 The SDG 7.2 target calls for a “substantial increase” in the share of renewable energy, requiring an accelerated penetration of renewable energy in all three end uses. Electricity accounted for almost two-thirds of renewable energy consumption growth from 2016 to 2017, followed by heat (30 percent) and transport (6 percent). With this growth, renewables’ share in electricity reached almost 25 percent and surpassed the renewable share in heat for the first time. The share of renewables (including traditional uses of biomass) in heat has been stable at around 23 percent since 2010 (Figure 3.3). The stability in shares stems from two concurrent drivers: first, slow declines in traditional uses of biomass for cooking and heating, and, second, greater use of modern renewable technologies. The year-on-year increase in the direct use of modern renewables for heat reached 2.3 percent in 2017. For the first time since 2001 the share of renewable energy in
transport did not rise, remaining at 3.3 percent, which is the lowest share among end uses. Biofuels account for most of renewable consumption in transport, but renewable electricity use is also emerging thanks to the uptake of rail and electric vehicles.

Renewable energy share by end use, 1990–2017

total renewable energy consumption in the region. Latin America and the Caribbean had the largest share of modern renewables among all regions thanks to the extensive use of modern bioenergy in transport and industry, in addition to hydropower electricity generation. In Southern Asia as well as in Eastern Asia and South-eastern Asia, the penetration of modern renewables in TFEC remains below the global average at around 8 percent. Outside of Latin America, Middle Africa, Europe, Oceania, and Northern America had the highest share of modern renewables in final consumption in 2017, led by bioenergy and hydropower, with wind and solar PV making growing contributions.

Renewable share in total final energy consumption by region, 2017

POLICY INSIGHTS: A FOCUS ON ELECTRICITY AND AUCTIONS
While modern renewable energy has seen robust growth in the past few years, deployment would need to accelerate much faster, especially in the heat and transport sectors, to ensure access to affordable, reliable, sustainable, and modern energy for all by 2030. Most scenarios for the energy transition point in the same direction. At the core of an energy transition thorough enough to reach the target of SDG 7 is increased electrification of all end uses, combined with a decarbonized power sector.

Global weighted average prices resulting from auctions and capacity awarded each year,
2010–18

ENERGY EFFICIENCY

COMPONENT TRENDS
The impact of improvements in primary energy intensity (the global proxy for improvements in energy efficiency) is revealed by trends in its underlying components. Between 1990 and 2017, global GDP more than doubled while global total primary energy supply increased by just over 50 percent. Although growth in primary energy supply slowed markedly in 2015 and 2016, it picked up again in 2017, growing by nearly 2 percent.

Trends in underlying components of global primary energy intensity, 1990–2017 (left); and
growth rates of GDP, primary energy supply, and intensity, 2015–17 (right)

TRENDS IN ELECTRICITY SUPPLY EFFICIENCY
In addition to improvements in end-use efficiency, the rate of global primary energy intensity improvement is also influenced by changes in the efficiency of electricity supply. These include improvements in the efficiency of fossil fuel generation and reductions in transmission and distribution losses. The efficiency of fossil fuel electricity generation has steadily improved since 2000, after showing flat rates of improvement during the preceding decade, to reach
nearly 40 percent in 2017.

Trends in global fossil fuel electricity generation efficiency (left) and growth in electricity
generation by fuel type (right), 1990–2017

OUTLOOK FOR SDG 7

HOW TO BRIDGE THE GAP To bridge the gap and connect the remaining 620 million people projected by the Stated Policies Scenario to be without access in 2030, the connection rate would have to triple from its current level—to nearly 90 million a year between 2019 and 2030. Most of the acceleration would have to happen in Sub-Saharan Africa, as discussed in the previous paragraph. Certain countries would have to scale up efforts, notably the Democratic Republic of Congo, Niger, Nigeria, Sudan, and Uganda, which together are home to half of the regional population lacking access in 2030 under the Stated Policies Scenario.

Projected gains in access to electricity by region and technology, 2019–30

Policies that promote centralized and decentralized solutions in parallel are crucial to unlocking electricity access. Geospatial analysis developed by IEA identified decentralized systems as the least-cost option for more than half of the electricity connections (representing nearly 440 million people) that would have to be made in Sub-Saharan Africa if the region were to achieve universal access by 2030. Decentralized solutions (largely based on renewables) can be adapted to conditions in remote rural areas, where around 80 percent of the population without access in Africa would be concentrated in 2030.36 If deployed carefully, such systems can complement the grid, providing energy services immediately and preparing the way for grid expansion in the future. Parallel efforts should be made to increase the
central grid’s density so as to connect nearby households and, where feasible, to extend it to reach large population centers. Capitalizing on the coverage of its main grid, Kenya implemented the Last Mile Connectivity Project, which has connected an average of one million households annually since 2015. Direct investment in the existing electricity network is also essential to improve and maintain energy services, increase trust in the central network, and raise the financial and operational performance of utilities.

SDG 7 AND REDUCTION OF EMISSIONS
The current energy system produces numerous greenhouse gases, making the energy sector responsible for around 75 percent of such emissions. Climate change mitigation is thus a mounting concern for the sector, and in 2020 countries will have to present revised and more ambitious commitments for the first time as a result of the Paris Agreement, which was adopted in 2015.

Additional reductions in CO2 emissions by measure under the Sustainable Development
Scenario relative to the Stated Policies Scenario

TRACKING SDG 7 PROGRESS ACROSS TARGETS: INDICATORS AND DATA

Comprehensive and accurate data are a prerequisite for making evidence-based decisions, monitoring trends, and tracking progress toward policy goals. In developed and developing countries alike, well-designed and appropriately resourced statistical systems play a fundamental role in monitoring progress toward Sustainable Development Goal 7 (SDG 7).

Click to download:

Posted in Africa, Mini Grid, Off-grid, Policy, Power Generation, Renewable Energy Certificates, Renewables | Tagged , , , , , , , , , | Leave a comment

Renewable Energy Outlook: Lebanon

The Lebanese solar revolution - Executive Magazine

INTRODUCTION

Country Background Geography
The Lebanese Republic is a sovereign state located in Western Asia adjoining the eastern edge of the Mediterranean region from the south along a 79 km border. It has a total territory of 10 452 km2, with a 225 km coast along the Mediterranean Sea that features a narrow coastal plain that is 6.5 km at its widest point and lies below the Lebanon Mountains, which rise to a maximum elevation of 3088 meters. The Bekaa Valley separates the Lebanon and Anti-Lebanon Mountains, with the latter rising to 2 814 m.

ENERGY SECTOR STATUS AND PLANS

Primary energy supply
Lebanon relies on imports to satisfy its energy demand. In terms of primary
energy, consumption is met using the following six major components:
• liquid petroleum gas (LPG);
• gasoline;
• gas oil;
• kerosene;
• fuel oil; and
• bitumen

The only sources of energy produced domestically include solar water heaters (SWHs), hydro power plants and a minor solar PV contribution. In 2010, energy imports accounted for approximately 96.8% of primary supply, and only 3.2% was locally produced from hydroelectric power plants and SWHs. The share of primary energy imports did not change significantly
between 2010 and 2015, as political instability in the region prevented uninterrupted imports of natural gas, thus forcing various plants to rely on fuel oil.

Total primary energy supply by source (%)

Ongoing power sector reform
The Lebanese electricity sector has suffered since the mid-1990s, primarily due to a lack of investment that has led to the sharp deterioration of the sector’s infrastructure. Hence, EDL has not been able to satisfy national electricity demand alone – a situation that has led to the development of smaller private diesel generators who operate in an unofficial capacity in a parallel electricity market.The reduction in generation capacity has been amplified by poor maintenance and increased demand. Indeed, the recent influx of refugees to Lebanon has contributed to the increasing gap between electricity generation and demand, which reached 7 375 GWh in 2017.

Electricity generation mix in Lebanon, 2010
Installed capacity versus peak demand

Electricity demand was estimated in 2016 to be around 22 000 GWh (Electricité du Liban (EDL), 2018), marking an increase of 54.8% since 2010, when demand was estimated at 15 934 GWh (LCEC, 2010). However, annual electricity demand data adopted by the MEW vary between 3.8% and 5%; the difference is essentially caused by the demand calculation methodology
employed by EDL and the demand consequences of the significant increase in population over a short period. For consistency with MEW data, the updated policy paper estimates a demand increase of 3% by 2020.

RENEWABLE ENERGY STATUS, TARGETS AND POLICIES

Overview Renewable energy sources have largely been limited to biomass heating in
rural areas and hydroelectric power plants installed before the 1970s that represented more than 75% of the electricity produced in Lebanon at that time.

Renewable energy targets and policy framework
Targets In 2018, the Prime Minister announced a renewable target of 30% of electricity consumed by 2030, as reflected in the latest electricity reform paper adopted by the Lebanese government in 2019.

Renewable energy target resource mix in the NREAP 2016–2020

Renewable energy potential, status and driving policy instruments
Hydropower was the first form of renewable energy to be deployed in Lebanon and plays a major role in supplying renewable electricity to the country. However, low contracted prices and lack of maintenance and/ or refurbishment of hydropower plants have led to a continuous drop in the share of hydropower in the energy mix.

Hydroelectric targets and potential

In March 2018, the MEW launched an expression of interest (EOI) for the installation of hydroelectric power plants on various Lebanese rivers. The MEW received 25 EOIs from 59 companies from 15 different countries to install more than 300 MW. The main challenge lies in the fact that most of the existing concessions, except for the Litani River Authority concessions, are used exclusively for agricultural and irrigation purposes rather than hydropower generation.To promote hydropower in these concessions, the Lebanese government delegated the MEW to negotiate concessions as per the newly adopted electricity plan in 2019 to find an appropriate solution for the current situation.

THE RENEWABLE ENERGY ROADMAP (REMAP)

The previous sections have outlined the energy context in Lebanon and provided a view of how the country’s energy landscape is likely to evolve over the coming years based on government plans and targets and the country’s energy strategy, including the NREAP (both 2016–2020 and 2016–2020 editions). IRENA’s REmap analysis, which is the focus of this section, provides an outlook for the potential of renewable energy in the country to 2030. It also highlights areas or sectors where the use of renewables could be scaled up.

Overview of the REmap approach

The steps involved in the REmap analysis for Lebanon presented in this chapter include:
• The definition of a base year selected to be the year 2014 due to data availability.
• The definition of a reference case 2030.
• The definition of a REmap case 2030.

Buildings In the buildings sector, final energy consumption grows from 72 petajoules (PJ) in the base year to 128 PJ in the reference case, mainly driven by electricity consumption which grows from 55 PJ in the base year to 95 PJ in the reference case. Oil and oil products come
in second place and grow from 16 PJ in the base year to 26 PJ in the reference case.

Final energy consumption in buildings (PJ)

Industry The Lebanese industrial sector in general has not experienced significant growth in recent years. Based on available data, the annual growth rate for thermal and electrical consumption is considered to be 0.1% for all industries except for the cement industry, where
an annual growth of around 2.4% in cement deliveries was detected.6 Accordingly, the growth of final energy consumption in industry is mainly driven by cement production. The consumption of oil and oil products for thermal purposes grows from 32 PJ in the base year to
around 40 PJ both in the reference and REmap cases, while electricity consumption grows from 15 PJ in the base year to 16 PJ.

Final energy consumption in industry (PJ)

Solar In the reference case, targeted solar PV capacity is expected to reach 1 030 MW, which corresponds to the major pipelined projects, all primarily based on public–private partnership (PPP) models. On top of that, the estimated installed capacity of decentralised solar PV projects, mainly driven by national financing mechanisms such as NEEREA, is expected to reach 150 MW. Another major solar related technology, CSP with storage, is expected to reach a total installed capacity of 100 MW on the same timeline. Accordingly, the total installed capacity of solar PV in terms of grid integrated farms, including PV with storage, decentralised projects
and CSP is expected to reach 1 280 MW in the proposed reference case.

Click to download:

Posted in Energy Storage, Hydro, Policy, Renewables, Solar, Solar Policy, Solar PV, solar water heating | Tagged , , , , , , , , , | Leave a comment

Recycle: Bioenergy

GCT Guide to Bioenergy; Waste-to-Energy | Green City Times

Introduction

Climate change is one of the greatest threats of our era. Over the past decade, energy-related
carbon dioxide (CO2 ) emissions have increased by 1% per year on average. If the historical trends were to continue, energy-related emissions would increase by a compound annual rate of 0.7% per year to 43 gigatonnes (Gt) by 2050 (up from 34 Gt in 2019), resulting in a likely temperature rise of 3°C or more in the second half of this century. Meanwhile, a growing world population is increasing the demand for energy. At the same time, large numbers of people have no access to electricity or are forced to spend a large part of their incomes on energy. Indeed, it is becoming increasingly harder to address the three central issues: security of supply, environmental sustainability and energy justice.

Current Status

Bioenergy makes up a large share of renewable energy use today and plays a key role as a source of energy and as a fuel in the end-use sectors (industry, transport and buildings), as well as in the power sector. Figure 1 shows key indicators of the current contribution of bioenergy to the energy transition. Bioenergy use has been growing and changing in promising ways, thanks to improvements in the technology, growing acceptance and supportive changes in policy environment, such as the global commitment to reaching the Sustainable Development Goals (SDG), in particular SDG7: ensure access to affordable, reliable, sustainable and modern energy for all.

Current bioenergy shares, and liquid biofuel production

Industry sector
The industry sector uses energy for a wide range of purposes, such as for processing and
assembly, steam generation, cogeneration, process heating and cooling, lighting, heating, and air conditioning. However, most of the energy consumed in industry is in the form of heat, especially in the most energy-intensive industrial sectors – iron and steel, chemical and petrochemical, non-metallic minerals, pulp and paper, and the food industry. Current direct renewable energy use in industry is predominantly in the form of biofuels and energy from waste. Biomass could play an expanded role for the decarbonisation of the industry sector, as it offers an established renewable energy option to provide low-, medium- and high temperature heat, as well as a feedstock that can replace fossil fuels. At a regional level, the largest share of biomass in industry’s final energy consumption in 2017 was in Latin America and the Caribbean at 32%, followed by Asia and Sub-Saharan Africa, both at 29%.

Transport sector
Globally, the share of renewable energy in this sector is very small at just 3% in 2017. In road
transport, the use of renewables is dominated by liquid biofuels, mostly bioethanol and biodiesel, which offer an alternative fuel for all types of internal combustion engines in both passenger vehicles and trucks. North America had the largest production of liquid biofuels in 2017, with 64 billion litres, followed by Latin America and the Caribbean with 31 billion litres and the European Union with 25 billion litres.

Buildings sector
There are two different ways of using biomass in the buildings sector: space heating and cooking. Buildings can currently be heated using biomass through town-scale district heating systems or building-scale furnaces, both of which use feedstocks such as wood chips and pellets very efficiently.

Power sector
Biomass and waste fuels in solid, liquid and gaseous forms are currently used to generate
electricity. The feedstocks and technologies range from mature, low-cost options, like the
combustion of agricultural and forestry residues, to less mature and/or expensive options, like
biomass gasification or municipal solid waste generators with stringent emissions controls. However, electricity generation from biomass is most often provided through combined heat and power (CHP) systems. Power production from biomass is relatively flexible, so it can
help to balance output over time on electricity grids with high shares of variable wind and solar power. At a regional level, in 2017 the European Union and Asia had the largest bioenergy capacity installed, a total of 34 GW each.

The technology outlook for bioenergy and bio-based materials

Bioenergy in the Industry Sector

Biomass, due to its versatility, could play significant roles in the industry sector. Biomass can be
used as a feedstock to replace fossil fuels, it can be used to produce low-, medium- and high-temperature heat, and it can be used as a fuel for localised electricity production. The versatility of biomass and its finite supply, however, also result in competition for its use within and between industry sectors, and other sectors of the economy. In IRENA’s analysis, renewable energy (including renewable electricity and district heating) could contribute 63% of industry’s total final energy consumption by 2050 (89 EJ in absolute terms). Of that total energy, 24% would be sourced from biomass (direct, bioelectricity and biomass in district heating) and the remaining 39% from other renewable sources (Figure 2).

Renewable energy contribution to industry final energy consumption in the Transforming Energy

Bioenergy in the Transport Sector

Compared to current levels, energy demand in the transport sector is lower under the
Transforming Energy Scenario due to efficiency improvements and other measures, such as
changes in transport modes and reductions in the need for travel. Fossil fuel consumption (oil,
natural gas) is sharply reduced, and there is a major increase in biofuels, which reach 17 EJ in 2050 (over five times 2017 levels) and provide 20% of total transport final energy demand. Electricity use in transport also grows sharply to 37 EJ (of which 2 EJ is bioelectricity, 29 EJ is from other renewable sources and the remaining 5 EJ is from fossil fuels), representing 43% of total transport final energy demand in 2050 (Figure 3).

Final energy consumption in the transport sector per energy carrier (2017 and 2030- 2050 TES)

Bioenergy in the Buildings Sector

In some cases, fossil fuel-based boilers can be co-fired with solid biomass, such as wood residues, or converted into biomass-only boilers. Biomass can also be used for both electricity and heat production in combined-heat and power (CHP) plants. Using biomass solely for electricity generation is not seen as a good choice because of its low efficiency, at about 30% (Koppejan and van Loo, 2008). However, the overall efficiency of biomass-based CHP plants for industry or district heating can be 70%-90%. As a result, sustainable bioenergy used to provide heat and power can reduce emissions considerably compared to coal, oil and natural gas generated heat and power.

In IRENA’s Transforming Energy Scenario, by 2050 the final energy consumption of modern
biomass (solid, biogas and liquid biomass, bioelectricity and biomass in district heating) grows
more than three-fold from the 2017 level in the buildings sector, from 5EJ in 2017 to 16EJ in 2050. (Figure 5).

Final energy consumption in the buildings sector by energy carrier (2017-2030 and 2050 under
the Transforming Energy Scenario)

Bioenergy in the Power Sector

Under the Transforming Energy Scenario, the power sector would be transformed. The total amount of electricity generated would more than double by 2050 – to over 55 000 TWh (up from around 24 000 TWh today). The share of electricity in total final energy use would increase from just 20% today to 49% by 2050, and 86% of that electricity would be generated by renewable sources, mostly wind (35% of renewable electricity), solar PV (25%) and some hydro (14%) (Figure 6). Biomass would be the fourth largest renewable power source, generating 7% of electricity. To produce that much power, bioenergy installed capacity would increase six-fold from 108 GW in 2017 to 685 GW in 2050. Asia would lead in bioenergy installed capacity, with 318 GW, followed by the European Union with 107 GW and Latin America and the Caribbean with 94 GW. In addition, biomass can be used for co-firing coal
power plants as an intermediate measure to reduce CO2 emissions.

Electricity generation mix in 2017 and in the Transforming Energy Scenario in 2050

Bio-based Materials

Because petrochemicals require hydrocarbon feedstocks, the only ways to produce these
sustainably are by using biomass feedstocks or by using CO2 captured from the air or from biomass combustion. The use of biomass feedstocks for plastics may result in the CO2 being
stored in products for decades and can, therefore, provide either carbon neutrality or negative
carbon emissions, depending the products’ eventual fate.

Carbon management potential of biomass

IRENA’s analysis is centered around the need to accelerate the global energy transformation,
driven by the dual imperatives of limiting climate change and fostering sustainable growth.
Renewable energy (including biomass), electrification and energy efficiency have emerged as key solutions for emissions reductions and achievement of the Paris Agreement goals.

Key drivers for the energy transformation

However, the reduction of carbon emissions is at the heart of IRENA’s analysis, given the urgent need to swiftly reduce the emissions that cause climate change.

Global pathway and the role of bioenergy

Emissions reductions and the role of bioenergy

IRENA’s Transforming Energy Scenario outlines a climate-friendly pathway with energy-related
CO2 emissions reductions of 70% by 2050 compared to current levels. About 9.5 Gt energy-related CO2 emissions would remain by 2050. Of that, just under one-quarter would be emitted in electricity generation, just under another one-quarter in transport, one-third in industry, 5% in buildings and the remaining 15% in other sectors (agriculture and district energy). The Transforming Energy Scenario is focused on energy-related CO2 emissions reductions, which make up around two-thirds of global greenhouse gas emissions. Of the 23.6 Gt of CO2 reductions achieved in 2050 relative to the Planned Energy Scenario, 11% (or 2.6 GtCO2 ) would come from bioenergy. Of that 0.6 GtCO2 is from biomass power generation, 0.7 GtCO2 from displacing liquid fossil fuel with liquid biofuels, 1.1 GtCO2 from solid biofuels and 0.2 GtCO2 from biogas/biomethane use in end-use sectors including district heating.

Energy outlook for biomass
Under current and planned policies in the Planned Energy Scenario, the share of biomass in total primary energy supply (TPES) would remain at similar levels as today, rising slightly from 9.4% in 2017 (4.8% from traditional uses and 4.6% from modern uses) to 10% in 2050, while under the Transforming Energy Scenario, it increases to 23% by 2050.

The global energy supply must become more efficient and more renewable

Barriers to the deployment of biomass for energy and material use

As is the case with other renewable energy and low-carbon technologies, several barriers inhibit the more widespread deployment of bioenergy and prevent this part of the circular carbon economy from reaching its carbon management potential.

Barriers to transitioning from traditional to modern uses of biomass

The inefficient traditional use of biomass leads to significant indoor and outdoor air pollution with severe health consequences along with other negative environmental and social impacts. One of the UN’s Sustainable Development Goals (SDG) is to ensure universal access to clean cooking solutions by 2030, and that goal has stimulated a global effort to reduce or improve the traditional use of biomass. Solutions include the use of fossil-based LPG as well as renewable solutions, such as solar based electricity. More sustainable biomass-based solutions also can provide energy for cooking and heating in developing economies, but there are still barriers to their adoption.

Financial barriers
One major barrier is the higher cost of the improved equipment and fuels which replace what is essentially a “free” resource of wood fuels and other residues (although their collection requires considerable time and effort) (World Bank, 2017). In addition, many potential users are living outside the cash economy and do not have the means to pay for fuels.

Technological barriers
Many proposed cookstove solutions do not have the technical characteristics to meet appropriate efficiency and environmental performance standards and also do not provide culturally acceptable solutions which reflect the needs of consumers, particularly in rural areas.

Comparison of costs of bioenergy and other options

Bioenergy heat costs are strongly influenced by the utilisation rate of the heat producing system, which favours industrial and larger-scale applications such as district heating. The relatively high cost of biomass fuels compared to low-cost coke and coal used in many high-temperature industry applications and in power production is a major impediment to fuel switching. (In the cement industry, low-cost waste fuels are used rather than wood-based fuels for cost reasons.)

Policy barriers The deployment of bioenergy depends on a strong and supportive policy and regulatory regime that provides for investor certainty over the income streams that projects will receive and also clearly establishes the regulatory requirements that projects must satisfy. For example, regulations must specify levels of emissions to air and water that are permitted and what other sustainability criteria must be achieved. Policy certainty is particularly important for bioenergy projects, where project lead times tend to be long, given the needs to plan technical aspects of projects, to negotiate other energy off-take agreements (sometimes for more than one energy product – e.g. heat and power), and to build up the necessary supply chain.

Sustainability of bioenergy
Concerns about the sustainability of bioenergy – the extent to which bioenergy contributes to
GHG emissions reduction targets and whether its widespread development would have positive or negative environmental, social or economic impacts – has made bioenergy a controversial subject, with poor public understanding of its benefits and uncertainty among policy makers. Confidence in the sustainability of bioenergy is an important requirement for its widespread development. Without this confidence, politicians are wary of including bioenergy in national GHG reduction programmes. Policy uncertainty and risks of reputational damage also discourage investment by industry.

Policies to support biomass use in energy

A wide range of policies and regulatory instruments can reduce barriers to bioenergy development and help create a positive enabling environment, ensuring that its development optimises carbon savings and avoids negative environmental, social or economic impacts. Bioenergy can benefit from measures that impact the whole energy economy – for example,
measures that constrain fossil fuel-based energy or increase its costs – or that generally promote renewable energy. Some measures tackle generic issues associated with bioenergy while others can be targeted at issues affecting specific technologies (for example, biogas and biomethane) or specific sectors, such as heat, transport and electricity production. Addressing all of the barriers described earlier requires a portfolio of policy and regulatory measures.

Click to download:

Posted in Biomass, Hydro, Policy, Renewables, Solar, Solar Policy, Solar PV, Wind | Tagged , , , , , , , , , , , , | Leave a comment

Reduce: Non-bio renewables

ARTFuels

Introduction Climate change has become one of the greatest threats of this century to environmental, as well as global, security, with adverse impacts on health, wealth and political stability. Over the past decade, energy-related CO2 emissions have increased by 1% per year on average, despite levelling off periodically. If historical trends continue, energy-related emissions will increase by a compound annual rate of 0.7% per year to 43 gigatonnes (Gt) by 2050 (up from 34 Gt in 2019), resulting in a likely temperature rise of 3°C or more in the second half of this century. Governments’ current and planned policies would result in a levelling of emissions, with emissions in 2050 similar to those today, but this would still cause a temperature rise of about 2.5°C. The Paris Agreement establishes a goal to limit the increase of global temperature to “well below” 2°C, and ideally to 1.5°C, compared to pre-industrial levels, by this century. To realise this climate target, a profound transformation of the global energy landscape is essential.

Current Status

This section will show how renewable energy is a proven and available technology by providing the latest figures, trends and market developments in renewable energy deployment worldwide. The strong business case for renewables is demonstrated by their cost,performance and deployment evolution, especially when considering trends in solar PV, wind and other renewable power generation options, along with the growing viability of energy storage technologies. The current innovation landscape for enabling technologies, business models and system operation will also be outlined and discussed. Renewable power generation continues to grow in 2020, despite the COVID-19 pandemic, but new capacity additions in 2020 will be lower than the new record previously anticipated. Nonetheless, renewables steadily increasing competitiveness, along with their modularity, rapid scalability and job
creation potential, make them highly attractive as countries and communities evaluate economic stimulus options.

Evolution of LCOE costs for solar PV and wind onshore (2010- 2019)

The share of renewable energy in electricity generation has been increasing steadily in
the past years and renewable power technologies are now dominating the global market for new generation capacity. From 2010 to 2018, the renewable electricity generation share increased from around 20% to nearly 26%, or 18% to 23% without considering bioenergy
Progress is being seen everywhere.

Evolution of renewable energy in the power sector (2010- 2017/2018/2019)

Dramatic shifts are taking place in the way that energy systems operate, driven by increased
digitalisation, the decentralisation and democratisation of power generation, and the growing
electrification of end-use sectors. Indeed, the main driver for the energy transformation is increased use of electricity, such as in the growing electric mobility revolution.

Renewable technology and carbon reduction outlook

Renewable energy, combined with intensified electrification, is key for the achievement of the Paris Agreement goals. To help enable the necessary transformation of the global energy sector, IRENA has developed an extensive and data-rich energy scenario database and analytical framework, which highlights immediately deployable, cost-effective options for countries to fulfil climate commitments and assesses the projected impacts of policy and technology change.

Key drivers for the energy transformation

To set the world on a pathway towards meeting the aims of the Paris Agreement, energy-related carbon dioxide (CO2 ) emissions need to be reduced by a minimum of 3.8% per
year from now until 2050, with continued reductions thereafter. However, trends over the past five years show annual growth in CO2 emissions of 1.3%. If this pace were maintained, the planet’s carbon budget would be largely exhausted by 2030, leading to a temperature increase of more than 3°C above pre-industrial levels. This case would mean that governments were failing to meet the commitments they made in signing the Paris Agreement.

Annual energy-related CO2
emissions and mitigation contributions by technology in the Baseline
Energy Scenario, the Planned Energy Scenario and the Transforming Energy Scenario (2010-2050)

In the Baseline Energy Scenario, energy-related emissions would to increase at a compound
annual rate of 0.7% per year to 43 gigatonnes (Gt) by 2050 (up from 34 Gt in 2019), resulting
in a likely temperature rise of 3°C or more by the end of the century. If the plans and pledges of countries are met as reflected in the Planned Energy Scenario, then energy-related CO2 emissions would increase each year until 2030, before dipping slightly by 2050 to just below today’s level. However, to meet the Paris Agreement target of limiting the global temperature rise to well below 2°C and towards 1.5°C, annual energy-related CO2 emissions would need to fall more than 70% from now until 2050. Achieving these emissions reductions requires an acceleration across a spectrum of sectors and technologies, ranging from rapid deployment of renewable power generation capacities such as wind and solar PV, to deeper electrification of the end uses of transport (e.g. electric vehicles (EVs)) and heat (e.g. heat pumps) powered by renewables, direct renewable use (e.g. solar thermal and biomass), energy efficiency (e.g. thermal insulation of buildings and process improvement) and infrastructure investment (e.g. power grids and flexibility measures such as storage).

Global pathway and decarbonising with renewables
Under current and planned policies in the Planned Energy Scenario, the total share of non-biomass renewable energy in the total primary energy supply (TPES) would only increase from around 5% to 17%, while under the Transforming Energy Scenario it increases to 42%. Renewable energy use in absolute terms, excluding biomass, would increase from 25 exajoules
(EJ) in 2017 to 225 EJ in 2050 in the Transforming Energy Scenario. TPES would also fall slightly
below 2017 levels, despite significant population and economic growth.

The global energy supply must become more efficient and more renewable

Scaling up electricity from renewables is crucial for the decarbonisation of the world’s
energy system. The most important synergy of the global energy transformation comes from
the combination of increasing low-cost renewable power technologies and the wider adoption of electricity for end-use applications in transport and heat and hydrogen production. To deliver the energy transition at the pace and scale needed would require almost complete decarbonisation of the electricity sector by 2050.The Transforming Energy Scenario sets a pathway to achieve an 86% share for renewables in power generation mix by 2050 (of which 7% is from bioenergy and 79% from non-bioenergy renewables). On the end-use side, the share of electricity in final energy consumption would increase from just 20% today to almost 50% by 2050. The share of electricity consumed in industry and buildings would double. In transport, it would increase from just 1% today to over 40% by 2050. For power generation, solar PV and wind energy would lead the way. Wind power would supply more than one-third of total electricity demand. Solar PV power would follow, supplying 25% of total electricity demand. which would represent more than a 10-fold rise in solar PV’s share of the generation mix by 2050 compared to 2017 levels. To achieve that generation mix, much greater capacity expansion would be needed by 2050 for solar PV (8 519 GW) than for wind (6 044 GW).

Breakdown of electricity generation and total installed capacity by source, 2017-2050

Due largely to increased renewable electrification and direct renewables use, the share of
renewable energy in total final energy consumption (TFEC) would also rise considerably. The Planned Energy Scenario sees an increase in the share of renewables in TFEC from 17% in 2017 to 25% by 2050. The Transforming Energy Scenario results in a much higher share of 66%. Increasingly, electrification with renewables is seen as a major solution, and the contribution of renewable electricity will be the single largest driver for change in the global energy transformation. The share of electricity in total final energy use would increase from just 20% today to 49% by 2050. The share of electricity consumed in industry and buildings would double to reach 42% in industry and 68% in buildings in 2050, and in transport it increases
from just 1% today to over 40%. Other subsectors or activities would also see significant increases in the share of electricity use. Some of the largest growth would be seen in the buildings sector for space heating and cooking, and in the transport sector for passenger and road freight.

Electricity becomes the main energy carrier in energy consumption by 2050

Power sector
The energy transformation outlined in the Transforming Energy Scenario would require the almost complete decarbonisation of the electricity sector by 2050. In addition, electricity consumption in end-use sectors would more than double compared to 2017 and reach 55 000 TWh by 2050, driving increased power demand to be met with renewables. However, the shift to electrification of end uses brings major increases in energy efficiency. Heat pumps, for example, are two to four times more efficient than conventional heating systems.

Power sector key indicators

With high shares of renewable electricity, flexibility is key to guarantee the stability of the power system. That flexibility will be enabled by current and ongoing innovations in technologies, business models, market design and system operation. On a technology level, both long-term and short-term storage will be important for adding flexibility, and the amount of stationary storage (which excludes EVs) would need to expand from around 30 gigawatt-hours (GWh) today to over 9 000 GWh by 2050. When storage available to the grid from the EV fleet is included, this value will increase by over 14 000 GWh to 23 000 GWh. However, most flexibility will be achieved through other measures, including grid expansion and operational measures, demand-side flexibility and sector coupling.

VRE share in generation and capacity, storage technologies

Transforming and electrifying the end-use sectors The most important synergy of the global energy transformation comes from combining low-cost renewable power technologies with the wider adoption of electric technologies for end-use applications in transport and heat. The renewable energy and electrification synergy alone can provide two-thirds of the emissions reductions needed to meet the goals of the Paris Agreement.This section details the key changes needed in the main energy-consuming end-use sectors of transport, industry and buildings (residential, commercial and public) over the period to 2050 in the Transforming Energy Scenario.

Looking ahead to longer time horizons up to 2050, with a different energy investment mix and USD 15 trillion of additional investment, the global energy system could become much more climate friendly, with cost-effective renewable energy technologies underpinned by more efficient use of energy. USD 3.2 trillion – representing around 2% of GDP worldwide – would have to be invested each year to achieve the low-carbon energy transformation. This is around USD 0.5 trillion more than under current plans. While cumulative global energy investments by 2050 would then be 16% higher, their overall composition would shift decisively away from fossil fuels.

Cumulative energy sector investments over the period to 2050 under the Planned Energy
Scenario and the Transforming Energy Scenario

The benefits for accelerating renewables deployment and efficiency measures are many times
larger than the costs. In the Transforming Energy Scenario, every USD 1 spent for the energy
transition would bring a payback of between USD 3 and USD 8. Or to put it in cumulative terms, the Transforming Energy Scenario would cost an additional USD 19 trillion over the period to 2050 but would bring benefits of between USD 50 trillion and USD 142 trillion in
reduced environmental and health externalities. Another way to look at costs is how much it takes to mitigate one tonne of CO2 over the period, which would be USD 34/t CO2 for the Transforming Energy Scenario.

. Cumulative system costs and savings from reduced externalities for the Transforming Energy
Scenario for the period to 2050 (USD trillion)

Decarbonisation of final energy consumption that cannot be electrified IRENA’s Transforming Energy Scenario outlines a climate-friendly pathway with energy-related CO2 emissions reductions of 70% by 2050 compared to 2019 levels.

The Deeper Decarbonisation Perspective “zero” would cost an additional USD 26 trillion to achieve fully zero emissions (with no carbon offsets) on top of the Transforming Energy Scenario costs of USD 19 trillion. Therefore, the total costs would be USD 45 trillion. Yet these higher costs are still much lower than the USD 62 trillion to USD 169 trillion in savings from reduced externalities that would result from reaching zero emissions.

Cumulative costs and savings for the Deeper Decarbonisation Perspective “zero”, 2020-2050

The overall costs do not account for the fact that many of the clean energy technologies are much cheaper than fossil fuel alternatives as . Another way to look at it is in the cost to mitigate one tonne of CO2 over the period. Many of the technologies that result in reductions
in the Transforming Energy Scenario are cheaper than the fossil fuel alternatives. Because the
Deeper Decarbonisation Perspective has to address remaining emissions in challenging sectors, and eventually reduce those to zero, it has higher costs compared to the Transforming Energy Scenario.

Mitigation costs for select technologies and groupings, 2050

Socio-economic footprint of the G20 energy transition

A true and complete energy transition includes both the energy transition and the socio-economic system transition, and the linkages between them. Therefore, a wider picture is needed that views energy and the economy as part of a holistic system. Socio-economic footprint analyses.have captured an increasingly comprehensive picture of the impact of the energy transition. For these analyses, IRENA has undertaken a macroeconometric approach (using the E3ME model) that links the energy system and the world’s economies within a single and consistent quantitative framework. The approach analyses variables such as GDP, employment and welfare.The results from the socio-economic footprint analysis of the Transforming Energy Scenario globally show an additional net 15 million jobs and a 13.5% improvement in welfare by 2050, as well as an annual average boost of 2% in GDP between 2019 and 2050 compared to the Planned Energy Scenario.

Estimating the socio-economic footprint of transition roadmaps

Energy sector and renewable energy jobs in the G20 The energy transition implies deep changes in the energy sector, with strong implications for the evolution of jobs. While some technologies experience significant growth (e.g. renewable generation, energy efficiency and energy flexibility), others would be gradually phased out (e.g. fossil fuels), and all of this happens simultaneously with the evolution of energy demand.

Gross domestic product in G20
yearly evolution of the difference in GDP between the Planned Energy Scenario and the Transforming Energy Scenario up to 2050, as well as the impact from the different drivers of the GDP difference. The energy transition brings about a significant improvement in GDP, with the increase rising to 3% before 2040 and remaining there until 2050.

Dynamic evolution of the drivers for GDP creation from the Planned Energy Scenario and the
Transforming Energy Scenario across the 2019 – 2050 period

The drivers for GDP play very differently in the different G20 countries.presents the distribution of GDP drivers’ impacts across the different G20 countries or regions in average terms during the 2019-2050 period, compared with the G20 aggregate. In the G20, the Transforming Energy Scenario produces (on average) a 2.4% GDP increase over the PES.

Average impact of the drivers for GDP creation from the Planned Energy Scenario and the Transforming Energy Scenario during the 2019-2050 period, and distribution of drivers’ impacts within the G20

presents the results of the welfare index for the G20 in the years 2030 and 2050. The welfare improvement of the Transforming Energy Scenario over the Planned Energy Scenario is very important, reaching 14% in 2050. Social and environmental dimensions, and specifically the health and GHG emissions subdimensions, dominate the overall welfare index results in the G20.

Evolution of the Welfare index for the G20 under the Transforming Energy Scenario

Barriers to the deployment of renewable energy

Despite the powerful factors driving the global uptake of renewable energy, multiple barriers inhibit further uptake in developed and developing markets. These vary based on specific markets and renewable energy technologies. This section outlines the some of the main barriers globally.

Enabling policies

Countries need to be increasingly ambitious in their pledges to scale up renewables and cut energy-related carbon dioxide (CO2) emissions.

Innovative auction design has also helped address some of the challenges related to system integration with increasing shares of variable renewable energy (VRE) generation. Mexico has considered geographical allocation signals according to the network integration feasibility and costs. India and South Africa have sought to concentrate renewable project developments in specific geographical areas.

. Weighted average prices of energy resulting from solar and wind auctions, globally and in G20
countries, and capacity awarded each year, 2011-2018

Measures to improve power system flexibility are needed to enable the integration of higher shares of VRE. Investment must be steered into innovations in all flexible resources (storage, demand-side management, interconnectors and dispatchable power plants), market design and system operations.

Click to download:

Posted in Power Generation, Renewables, Solar, Solar PV, Wind | Tagged , , , , , , , , , , | Leave a comment

Renewable Energy and Jobs – Annual Review 2020

RENEWABLE ENERGY AND JOBS

Annual Review 2020 The renewable energy sector employed at least 11.5 million people, directly and indirectly, in 2019.1 Renewable energy employment has continued to grow worldwide since 2012, when the International Renewable Energy Agency (IRENA) began to assess it on an annual basis.The solar photovoltaic (PV), bioenergy, hydropower and wind power industries have been the biggest employers. The bulk of global jobs relate to modern energy use, but the 2019 estimate includes jobs tied to the use of decentralised solar PV to expand energy access in parts of Sub-Saharan Africa and in South Asia. renewable energy employment estimates since 2012.2 The majority of these jobs are still held by men. The share of women in the renewable energy workforce is about 32%, compared to 22% in the energy sector overall.

GLOBAL RENEWABLE ENERGY EMPLOYMENT BY TECHNOLOGY, 2012-2019

GLOBAL RENEWABLE ENERGY EMPLOYMENT BY TECHNOLOGY, 2012-2019

This year’s edition of the Annual Review series highlights the latest employment trends
by technology, including jobs in decentralised applications of renewable energy for improved energy access. The report then offers insights for selected regions and countries. It also includes a feature highlighting the importance of education and training policies to avoid skills shortages as renewable energy continues to expand. The report concludes with observations on the impacts of the crisis triggered by the outbreak of COVID-19 and a sketch of the way
forward to ensure a successful energy transition.

RENEWABLE ENERGY EMPLOYMENT BY TECHNOLOGY
This section presents estimates for employment in solar PV, liquid biofuels, wind, solar heating and cooling, and hydropower. Less information is available for other technologies such as biogas, geothermal energy and ground-based heat pumps, concentrated solar power (CSP), waste-to-energy and ocean or wave energy. These other technologies also employ fewer people.

RENEWABLE ENERGY EMPLOYMENT BY TECHNOLOGY

SOLAR PHOTOVOLTAIC
Globally, the solar PV industry installed 97 gigawatts (GW) of capacity during 2019, slightly less than the 100 GW installed in 2018. More than half, some 55 GW, was added in Asian countries (principally China, India, Japan and Viet Nam); Europe installed 19 GW, the United States another 9 GW and Australia close to 6 GW.

SOLAR PV EMPLOYMENT: TOP 10 COUNTRIES

LIQUID BIOFUELS
Global biofuels production increased 5% in 2019, principally driven by a 13% expansion of biodiesel (with Indonesia overtaking the United States and Brazil to become the largest national producer), while ethanol production inched up by 2%. Worldwide employment in biofuels was estimated at 2.5 million in 2019.5 The bulk of these jobs were in the agriculture sector, planting and then harvesting feedstock of various types. Processing the feedstock
into fuels requires far fewer people than supplying the feedstock, but processing jobs generally require higher technical skills and offer better pay.

LIQUID BIOFUELS EMPLOYMENT: TOP 10 COUNTRIES

With close to 839 000 jobs, Brazil has the world’s largest liquid biofuels workforce. The United States is the leading biofuels producer, but its lower labour intensity translates to about 297 000 jobs. Biofuels employment in the European Union was estimated at about 239 000 jobs in 2018, the most recent year for which data are available.

WIND EMPLOYMENT: TOP 10 COUNTRIES

HYDROPOWER
Given its deployment over many decades, hydropower is still the largest source of renewable electricity in the world, accounting for 44.6% of the total installed renewable energy capacity in 2019. China, Brazil, the United States and Canada were the top countries that year. However,
global net additions of capacity in 2019 were the lowest in the last 17 years and 43% below the value in 2018.

HYDROPOWER’S SHARE OF TOTAL INSTALLED RENEWABLE ENERGY CAPACITY, 2019
HYDROPOWER EMPLOYMENT BY COUNTRY, 2019

SOLAR HEATING AND COOLING
The global solar heating and cooling market was led by China – followed by Turkey, India, Brazil and the United States. While installations declined in China and the United States, markets in India and Brazil saw growth in 2019. IRENA’s estimates indicate that global employment in the sector stood at 823 300 jobs. The top five countries account for 93% of all jobs. Of the top ten, four (China, India, Turkey and Jordan) are from Asia and three (the United Kingdom, Germany and Spain) from Europe. Asia accounts for 88% of the world total, some
727 000 jobs. With more than 70% of global installed capacity and a strong position in export markets, China remains the dominant employer in solar heating and cooling. Estimates for the country suggest that the workforce held steady at 670 000 in 2019.

DECENTRALISED RENEWABLE ENERGY EMPLOYMENT
Extraordinary growth potential exists for decentralised applications of renewable energy, especially in the least-developed countries, where only 52% of the overall population had access to electricity in 2018. In some countries, rural access rates are well below 10%.
At the same time, even before the COVID-19 crisis unemployment rates in these rural communities were high and rising, with women and youth the most affected.

ESTIMATED FORMAL, INFORMAL AND PRODUCTIVE USE EMPLOYMENT, 2017–18

RENEWABLE ENERGY EMPLOYMENT IN SELECTED COUNTRIES
This section presents key country-level trends and observations. It first discusses a number of leading countries – China, Brazil, the United States, India and members of the European Union and then presents information on additional countries by region. Overall, the bulk of renewable energy employment is in Asian countries, which accounted for 63% of jobs in 2019.

RENEWABLE ENERGY EMPLOYMENT IN SELECTED COUNTRIES

BEYOND THE NUMBERS
In our societies, a job is how the vast majority of working people secure an income for themselves and their families. Beyond ensuring an adequate number of jobs, labour representation is often essential to ensuring good jobs that will provide an adequate
wage or salary in a safe and productive workplace.


WOMEN’S SHARE OF STEM AND ADMINISTRATIVE JOBS,
ALL RENEWABLES AND WIND POWER

THE IMPACTS OF COVID-19 AND THE WAY FORWARD
The onset of the COVID-19 crisis upended economic trends and dynamics around the world, including in the energy sector. To date, renewable energy as a whole has fared better than fossil fuels. Nonetheless, renewables have been affected by temporary disruptions in the
supply of equipment, components or raw materials, and more recently by demand-side impacts. To maximise benefits and limit adjustment costs, governments must keep in mind the underlying drivers of the energy transition (investment, trade, fiscal policy, and indirect and induced effects of the transition across the economy) and put in place policies enabling the accelerated deployment of renewables. They must also be alert to potentially significant misalignments between job gains and losses in the transition (IRENA, 2019c). Such misalignments may take any of several forms:

1.Temporal. The creation of new jobs does not necessarily take place on the same time scale as
the loss of employment.

2.Spatial. New jobs are not necessarily being created in the same locations – communities,
regions or countries – where losses occur.

3.Sectoral. Job gains and losses may affect different sectors of the economy, given different
supply-chain structures and diverging sets of inputs between rising and declining industries.

4.Educational. The skills associated with vanishing jobs do not always match those required by
emerging jobs.

Policies to accelerate the uptake of renewables must go hand in hand with efforts to leverage and enhance local capabilities through industrial policies, building supply chains and developing the available pool of skilled labour, without which the energy transition
cannot maximise socio-economic benefits. Therefore, educational and training programmes, labour market measures and social protection policies are essential to match the demand for jobs and skills with supply of the same, to retrain fossil fuel workers and to preserve social equity.

Click to download:

Posted in China, Hydro, India, Renewables, Solar, Solar PV, Wind | Tagged , , , , , , | Leave a comment