Suppression of PCBM dimer formation in inverted perovskite solar cells – Nature

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Advertisement
Nature Materials (2025)
6581 Accesses
2 Citations
18 Altmetric
Metrics details
Achieving a well-controlled electron-selective layer is critical for the device scalability and performance of perovskite solar cells. While phenyl-C61-butyric acid methyl ester (PCBM) is a promising electron-selective material in inverted perovskite solar cells, its dimerization under environmental stress accelerates the material degradation and complicates producing high-quality PCBM layers, thereby compromising device long-term operational stability and scale-up fabrication. Here we investigated the PCBM molecular stacking on perovskite surfaces, finding that the variability in perovskite surface termination leads to orientation and distribution heterogeneity of the PCBM layer, resulting in undesirable dimerization. To address this, we developed a molecular dopant for suppressing PCBM dimer formation, achieving a certified efficiency of 26.4% in laboratory-scale devices and 25.3% in 1 cm2 devices. Furthermore, these devices maintained 93% of their initial power conversion efficiency after 1,500 h of ageing at 85 °C following the ISOS L-2I protocol.
This is a preview of subscription content, access via your institution
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
USD 39.95
Prices may be subject to local taxes which are calculated during checkout
The data that support the findings of this study are available from the corresponding authors upon request.
Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384, 189–193 (2024).
Article  CAS  PubMed  Google Scholar 
Wei, P. et al. Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 379, 683–690 (2023).
Article  Google Scholar 
Liu, C. et al. Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science 382, 810–815 (2023).
Article  CAS  PubMed  Google Scholar 
Liu, C. et al. Two-dimensional perovskitoids enhance stability in perovskite solar cells. Nature 633, 359–364 (2024).
Article  CAS  PubMed  Google Scholar 
Zhu, P. et al. Aqueous synthesis of perovskite precursors for highly efficient perovskite solar cells. Science 383, 524–531 (2024).
Article  CAS  PubMed  Google Scholar 
Liang, Z. et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624, 557–563 (2023).
Article  CAS  PubMed  PubMed Central  Google Scholar 
Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022).
Article  CAS  PubMed  Google Scholar 
Yu, S. et al. Homogenized NiOx nanoparticles for improved hole transport in inverted perovskite solar cells. Science 382, 1399–1404 (2023).
Article  CAS  PubMed  Google Scholar 
Wang, W. T. et al. Water- and heat-activated dynamic passivation for perovskite photovoltaics. Nature 632, 294–300 (2024).
Article  CAS  PubMed  PubMed Central  Google Scholar 
Tan, Q. et al. Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545–551 (2023).
Article  CAS  PubMed  Google Scholar 
Liu, S. et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024).
Article  PubMed  Google Scholar 
Li, Z. et al. Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science 382, 284–289 (2023).
Article  CAS  PubMed  Google Scholar 
Zhao, K. et al. peri-Fused polyaromatic molecular contacts for perovskite solar cells. Nature 632, 301–306 (2024).
Article  CAS  PubMed  Google Scholar 
Park, S. M. et al. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624, 289–294 (2023).
Article  CAS  PubMed  Google Scholar 
Zhang, S. et al. Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404–409 (2023).
Article  CAS  PubMed  Google Scholar 
Shao, Y., Yuan, Y. & Huang, J. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nat. Energy 1, 15001 (2016).
Article  CAS  Google Scholar 
Uddin, M. A. et al. Blading of conformal electron-transport layers in p-i-n perovskite solar cells. Adv. Mater. 34, 2202954 (2022).
Article  CAS  Google Scholar 
Krückemeier, L., Krogmeier, B., Liu, Z., Rau, U. & Kirchartz, T. Understanding transient photoluminescence in halide perovskite layer stacks and solar cells. Adv. Energy Mater. 11, 2003489 (2021).
Article  Google Scholar 
Shao, Y., Xiao, Z., Bi, C., Yuan, Y. & Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014).
Article  CAS  PubMed  Google Scholar 
You, S. et al. Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules. Science 379, 288–294 (2023).
Article  CAS  PubMed  Google Scholar 
Dzwilewsk, A. et al. Photo-induced and resist-free imprint patterning of fullerene materials for use in functional electronics. J. Am. Chem. Soc. 131, 4006–4011 (2009).
Article  Google Scholar 
Rao, A. M. et al. Photoinduced polymerization of solid C60 films. Science 259, 955–957 (1993).
Article  CAS  Google Scholar 
Pont, S., Foglia, F., Higgins, A. M., Durrant, J. R. & Cabral, J. T. Stability of polymer:PCBM thin films under competitive illumination and thermal stress. Adv. Funct. Mater. 28, 1802520 (2018).
Article  Google Scholar 
Heumueller, T. et al. Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability. Energy Environ. Sci. 9, 247–256 (2016).
Article  CAS  Google Scholar 
Zhang, M. et al. Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nat. Commun. 10, 4593 (2019).
Article  PubMed  PubMed Central  Google Scholar 
Liu, T. & Dennis, T. J. S. Conformational analysis of [60]PCBM from DFT simulations of electronic energies, bond strain and the 13C NMR spectrum: input geometry determination and ester bond rotation dynamics. C 7, 1–13 (2021).
Google Scholar 
Liu, T., Misquitta, A. J., Abrahams, I. & Dennis, T. J. S. Characterization of the fullerene derivative [60]PCBM, by high-field carbon, and two-dimensional NMR spectroscopy, coupled with DFT simulations. Carbon 173, 891–900 (2021).
Article  CAS  Google Scholar 
Tanaka, M. & Young, R. J. Review polarised Raman spectroscopy for the study of molecular orientation distributions in polymers. J. Mater. Sci. 41, 963–991 (2006).
Article  CAS  Google Scholar 
Liu, Y. et al. Angle-resolved polarized Raman spectra of the basal and edge plane of MoS2. Opt. Express 29, 32818–32825 (2021).
Article  CAS  PubMed  Google Scholar 
Menéndez, J., Page, J. B. in Light Scattering in Solids VIII. Topics in Applied Physics Vol. 76 (eds Cardona, M. & Güntherodt, G.) Ch. 2 (Springer, 2000).
Lin, M. L. et al. Understanding angle-resolved polarized Raman scattering from black phosphorus at normal and oblique laser incidences. Sci. Bull. 65, 1894–1900 (2020).
Article  CAS  Google Scholar 
Liu, X.-L., Zhang, X., Lin, M.-L. & Tan, P.-H. Different angle-resolved polarization configurations of Raman spectroscopy: a case on the basal and edge plane of two-dimensional materials. Chin. Phys. B 26, 067802 (2017).
Article  Google Scholar 
Wei, Q. et al. Surface-segregated monolayers: A new type of ordered monolayer for surface modification of organic semiconductors. J. Am. Chem. Soc. 131, 17597–17604 (2009).
Article  CAS  PubMed  Google Scholar 
Ye, F. et al. Overcoming C60-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane. Nat. Commun. 13, 7454 (2022).
Article  CAS  PubMed  PubMed Central  Google Scholar 
Awni, R. A. et al. Influence of charge transport layers on capacitance measured in halide perovskite solar cells. Joule 4, 644–657 (2020).
Article  CAS  Google Scholar 
Gong, C. et al. Silver coordination-induced n-doping of PCBM for stable and efficient inverted perovskite solar cells. Nat. Commun. 15, 4922 (2024).
Article  CAS  PubMed  PubMed Central  Google Scholar 
Ighodalo, K. O. et al. Negligible ion migration in tin-based and tin-doped perovskites. Angew. Chem. Int. Ed. 62, e202213932 (2023).
Article  CAS  Google Scholar 
Xing, Z. et al. Bowl-assisted ball assembly for solvent-processing the C60 electron transport layer of high-performance inverted perovskite solar cell. Angew. Chem. Int. Ed. 62, e202305357 (2023).
Article  CAS  Google Scholar 
Hori, T. et al. Synthesis of halogen-bond-donor-site-introduced functional monomers through wittig reaction of perfluorohalogenated benzaldehydes: toward digitalization as reliable strategy in small-molecule synthesis. Synlett 34, 2455–2460 (2023).
Article  CAS  Google Scholar 
Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).
Article  Google Scholar 
Ni, Z. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352–1358 (2020).
Article  CAS  PubMed  Google Scholar 
Pracht, P. et al. CREST—a program for the exploration of low-energy molecular chemical space. J. Chem. Phys. 160, 114110 (2024).
Article  CAS  PubMed  Google Scholar 
Spicher, S. et al. Robust atomistic modeling of materials, organometallic, and biochemical systems. Angew. Chem. Int. Ed. 59, 15665–15673 (2020).
Article  CAS  Google Scholar 
Neese, F. Software update: the ORCA program system—version 5.0. WIRES Comput. Mol. Sci. 12, e1606 (2022).
Article  Google Scholar 
Grimme, S. et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).
Article  PubMed  Google Scholar 
Thompson, A. P. et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).
Article  CAS  Google Scholar 
Verlet, L. Computer “experiments” on classical fluids. I. Thermodynamical properties of lennard-jones molecules. Phys. Rev. 159, 98–103 (1967).
Article  CAS  Google Scholar 
Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).
Article  Google Scholar 
Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).
Article  CAS  Google Scholar 
Martínez, L. et al. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).
Article  PubMed  Google Scholar 
Zhou, H. et al. Competing dissolution pathways and ligand passivation-enhanced interfacial stability of hybrid perovskites with liquid water. ACS Appl. Mater. Interfaces 12, 23584–23594 (2020).
Article  CAS  PubMed  Google Scholar 
He, X. et al. A fast and high-quality charge model for the next generation general AMBER force field. J. Chem. Phys. 153, 114502 (2020).
Article  CAS  PubMed  PubMed Central  Google Scholar 
Raptis, V. et al. Interface modelling for (CH3)3SPbI3 and (NH2)2CHPbI3 perovskite layers. J. Phys. Chem. Solids 180, 111383 (2023).
Article  CAS  Google Scholar 
Bayly, C. I. et al. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269–10280 (1993).
Article  CAS  Google Scholar 
Kresse, G. et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Article  CAS  Google Scholar 
Download references
This research was financially supported by the CAS Project for Young Scientists in Basic Research (grant number YSBR-102), the National Key R&D programme of China (grant number 2021YFB3800102) and the National Natural Science Foundation of China (grant numbers 52302324, 52272252, U22A20142 and 62204108). J.Y. acknowledges the support from the Director’s Fund of Hefei Institutes of Physical Science (grants numbers YZJJ-GGZX-2022-01 and YZJJ202304-CX). N.-G.P. acknowledges financial support through grants from the National Research Foundation of Korea, which is funded by the Korean Ministry of Science and ICT under contract NRF-2021R1A3B1076723 (Research Leader Program). J.L. acknowledges the support from the National Natural Science Foundation of China (grant number 22303053). We thank the XPS group and scanning electron microscopy group of the Instruments Center for Physical Science, University of Science and Technology of China for its vigorous support on the work in this article. X.L., J.L. and Y.Z. thank the Center for Computational Science and Engineering at Southern University of Science and Technology and Hoffmann Institute of Advanced Materials at Shenzhen Polytechnic University for providing the computing resources.
These authors contributed equally: Zheng Liang, Huifen Xu, Zhenda Huang, Xia Lei, Jiajiu Ye.
Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People’s Republic of China
Zheng Liang, Huifen Xu, Zhenda Huang, Jiajiu Ye, Boyuan Liu, Shirui Weng, Yuli Tao, Hui Zhang, Feng Chen, Liangbao Yang & Xu Pan
University of Science and Technology of China, Hefei, People’s Republic of China
Zheng Liang, Huifen Xu, Zhenda Huang, Boyuan Liu, Wenjing Chen, Xue Wang, Yuli Tao, Hui Zhang, Wanting Liu, Hongmin Zhou, Shangfeng Yang & Zhengguo Xiao
School of Chemical Engineering and Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon, Republic of Korea
Zheng Liang, Yalan Zhang, Sang-Uk Lee & Nam-Gyu Park
SKKU Institute of Energy Science and Technology, Sungkyunkwan University, Suwon, Republic of Korea
Zheng Liang, Yalan Zhang, Sang-Uk Lee & Nam-Gyu Park
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, People’s Republic of China
Xia Lei, Peide Zhu, Yaru Li, Jie Zeng, Jiufeng Dong & Baomin Xu
Hoffman Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, People’s Republic of China
Xia Lei & Jingbai Li
IMD3-Photovoltaics, Forschungszentrum Jülich, Jülich, Germany
Jiajiu Ye & Thomas Kirchartz
Sustainable Energy and Environment Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, People’s Republic of China
Yong Zhang
School of Renewable Energy, Hohai University, Changzhou, People’s Republic of China
Yunxiao Liao & Yong Ding
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
Xiangbin Cai
i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People’s Republic of China
Hongzhen Lin
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People’s Republic of China
Guoning Xu
ChangZhou S.C Exact Equipment Co., Changzhou, People’s Republic of China
Jiang Sheng
Faculty of Engineering and CENIDE, University of Duisburg-Essen, Duisburg, Germany
Thomas Kirchartz
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
Z.L., J.Y. and X.P. conceived the main idea of this work; J.Y., X.P. and N.-G.P. oversaw the administration of this project; J.L., Z.L. and Y.Z. conceptualized and analysed the theoretical study; Z.L., H.X., Z.H. and B.L. fabricated devices and performed photovoltaic measurements; X.L. performed the MD simulations and DFT calculations under the supervision of J.L; Z.L. contributed to or assisted with subsequent experimental characterizations and data analysis. P.Z., Y. Li, J.Z. and J.D. synthesized the perovskite materials and performed the electrical characterizations under supervision of Y.Z. and B.X; W.C. performed optoelectronic characterization under supervision of Z.X; X.W. contributed to the methodology design under supervision of S.Y; Y.L. completed the preparation and testing of large area PSMs under supervision of Y.D. and J.S; S.W. contributed to the ARPR analysis under supervision of L.Y; Y.T. and H.Z. synthesized the additive chemicals under supervision of J.Y. and X.P; X.C. and H.Zh. performed electron microscope analysis; W.L. and Y.Zh. performed the XPS and UPS analysis; S.-U.L. and contributed to the analysis and discussion of activation energy and band alignment. H.L. performed the SFG analysis; T.K. contributed to the discussion of the mechanism; G.X., J.L., Y.Z., J.Y., B.X., X.P. and N.-G.P. secured the funding for this project; Z.L., H.X. and J.Y. wrote the original draft J.L., Y.Z., S.Y., B.X., Z.X., T.K., Y.Y., X.P. and N.-G.P. revised the paper; all authors discussed the results and commented on the paper.
Correspondence to Jiajiu Ye, Yong Zhang, Jingbai Li, Xu Pan or Nam-Gyu Park.
The authors declare no competing interests.
Nature Materials thanks Xiong Li, Yixin Zhao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
PL spectra of a, the bare perovskite (PVSK) and separately coated with FIBA (PVSK/FIBA) and b, perovskite films with bare PCBM (Ref) and FIBA-treated PCBM (FIBA).
FIBA concentration varied from 5 wt% to 25 wt%.
Energetic level (Ea’) relative to perovskite VBM, as extracted from C-ω-T measurements.
Statistical data of detailed photovoltaic parameters, including a, VOC, b, JSC, c, FF and d, PCE of a series devices treated with various FIBA concentrations. Extended Data Fig. 4 presents a box plot showing the mean, the median (as a central line), the 25th to 75th percentile range as the box, and whiskers extending to 1.5 times the interquartile range.
a, EQE results of the reference and FIBA devices. b, Plot of the first-order derivative of EQE measurements, indicating the bandgap of the perovskite materials.
Optical microscopy images of the a, reference and b, FIBA devices at the metal electrodes region after stability testing under ISOS D-2I. The scale bars represent 100 μm.
Optical microscopy images of the a, reference and b, FIBA devices at the metal electrodes region after stability testing under ISOS L-3. The scale bars represent 50 μm.
Supplementary Figs. 1–55, Tables 1–7, Notes 1–5 and references.
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
Liang, Z., Xu, H., Huang, Z. et al. Suppression of PCBM dimer formation in inverted perovskite solar cells. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02368-7
Download citation
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s41563-025-02368-7
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative
Nature Materials (2025)
Advertisement
Nature Materials (Nat. Mater.)
ISSN 1476-4660 (online)
ISSN 1476-1122 (print)
© 2025 Springer Nature Limited
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

source

This entry was posted in Renewables. Bookmark the permalink.

Leave a Reply