Illumination-assisted annealing enables selenium solar cells with open-circuit voltage over 1 V and efficiency exceeding 10% – Nature

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Advertisement
Nature Energy (2026)
15 Altmetric
Metrics details
Selenium (Se), the world’s oldest photovoltaic material, is experiencing a resurgence in interest due to its intrinsic wide bandgap of approximately 1.9 eV, making it an ideal photoabsorber for the top cell in tandem solar cells and for indoor photovoltaics. However, the power conversion efficiency of Se solar cells remains constrained by severe non-radiative recombination losses caused by the small grain size (~500 nm) of conventionally thermally annealed Se films. Here we report an illumination-assisted annealing strategy that enables photo-induced crystallization at ambient temperature while suppressing dewetting, followed by subsequent thermal annealing, to fabricate Se films with large grains (~2.7 μm), a low trap-state density (6.9 × 10¹⁴ cm⁻³) and a long carrier lifetime (22.9 ns). The resultant Se solar cells achieve a certified power conversion efficiency of 10.3% with a 1.03 V open-circuit voltage. Unencapsulated devices exhibit negligible performance loss after 1,000 h under maximum power point tracking in ambient conditions.
This is a preview of subscription content, access via your institution
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
USD 39.95
Prices may be subject to local taxes which are calculated during checkout
All data generated or analysed in this study are included in the published Article, its Supplementary Information and its Source data. Source data are provided with this paper.
Todorov, T. K. et al. Ultrathin high band gap solar cells with improved efficiencies from the world’s oldest photovoltaic material. Nat. Commun. 8, 682 (2017).
Article  Google Scholar 
Hadar, I., Song, T.-B., Ke, W. & Kanatzidis, M. G. Modern processing and insights on selenium solar cells: the world’s first photovoltaic device. Adv. Energy Mater. 9, 1802766 (2019).
Article  Google Scholar 
Yan, B. et al. Indoor photovoltaics awaken the world’s first solar cells. Sci. Adv. 8, eadc9923 (2022).
Article  Google Scholar 
Lu, W. et al. Ordering one-dimensional chains enables efficient selenium photovoltaics. Joule 8, 1430–1442 (2024).
Article  Google Scholar 
Nielsen, R. et al. Monolithic selenium/silicon tandem solar cells. PRX Energy 3, 013013 (2024).
Article  Google Scholar 
Bishop, D. M., Todorov, T., Lee, Y. S., Gunawan, O. & Haight, R. Record efficiencies for selenium photovoltaics and application to indoor solar cells. In 2017 IEEE 44th Photovoltaic Specialist Conference 1441–1444 (IEEE, 2017).
Nielsen, R. et al. Laser-annealing and solid-phase epitaxy of selenium thin-film solar cells. ACS Appl. Energy Mater. 6, 8849–8856 (2023).
Article  Google Scholar 
Kavanagh, S. R. et al. Intrinsic point defect tolerance in selenium for indoor and tandem photovoltaics. Energy Environ. Sci. 18, 4431–4446 (2025).
Article  Google Scholar 
Liu, X. et al. Enhanced carrier management and photogenerated charge dynamics for selenium (Se) film photovoltaics. Appl. Phys. Lett. 123, 063901 (2023).
Article  Google Scholar 
Youngman, T. H. et al. Semitransparent selenium solar cells as a top cell for tandem photovoltaics. Sol. RRL 5, 2100111 (2021).
Article  Google Scholar 
Lu, W. et al. Structure of amorphous selenium: small ring, big controversy. J. Am. Chem. Soc. 146, 6345–6351 (2024).
Article  Google Scholar 
Liu, Q. et al. Standing 1D chains enable efficient wide-bandgap selenium solar cells. Adv. Mater. 37, 2410835 (2025).
Article  Google Scholar 
Nielsen, R. et al. Origin of photovoltaic losses in selenium solar cells with open-circuit voltages approaching 1 V. J. Mater. Chem. A 10, 24199–24207 (2022).
Article  Google Scholar 
Hadar, I., Hu, X., Luo, Z.-Z., Dravid, V. P. & Kanatzidis, M. G. Nonlinear band gap tunability in selenium-tellurium alloys and its utilization in solar cells. ACS Energy Lett. 4, 2137–2143 (2019).
Article  Google Scholar 
Liu, W., Said, A. A., Fan, W. J. & Zhang, Q. Inverted solar cells with thermally evaporated selenium as an active layer. ACS Appl. Energy Mater. 3, 7345–7352 (2020).
Article  Google Scholar 
Nielsen, R. S. et al. Increasing the collection efficiency in selenium thin-film solar cells using a closed-space annealing strategy. ACS Appl. Energy Mater. 7, 5209–5215 (2024).
Article  Google Scholar 
Lu, W. et al. Lanthanide-like contraction enables the fabrication of high-purity selenium films for efficient indoor photovoltaics. Angew. Chem. Int. Ed. 64, e202413429 (2025).
Article  Google Scholar 
Lu, W. et al. Melt- and air-processed selenium thin-film solar cells. Sci. China Chem. 65, 2197 (2022).
Article  Google Scholar 
Li, R. et al. Efficient selenium photodiodes based on an inverted P-i-N structure. Chem. Mater. 36, 5846–5854 (2024).
Article  Google Scholar 
Bao, F. et al. Modification of the Se/MoOx rear interface for efficient wide-band-gap trigonal selenium solar cells. ACS Appl. Mater. Interfaces 17, 6222–6229 (2025).
Article  Google Scholar 
Chen, X., Bai, S., Li, R., Yang, Y. & Lin, Q. Resolving the trap levels of Se and Se1−xTex via deep-level transient spectroscopy. Phys. Rev. Mater. 8, 033805 (2024).
Article  Google Scholar 
Liu, W., Yu, F., Fan, W., Li, W.-S. & Zhang, Q. Employing equivalent circuit models to study the performance of selenium-based solar cells with polymers as hole transport layers. Small 17, 2101226 (2021).
Article  Google Scholar 
Shen, K. et al. Oxygen-assisted high-temperature deposition of high-efficiency trigonal selenium solar cells. Adv. Energy Mater. 15, 2501930 (2025).
Article  Google Scholar 
Bob, B. et al. The development of hydrazine-processed Cu(In,Ga)(Se,S)2 solar cells. Adv. Energy Mater. 2, 504–522 (2012).
Article  Google Scholar 
Yin, K. et al. Gradient bandgaps in sulfide kesterite solar cells enable over 13% certified efficiency. Nat. Energy 10, 205–214 (2025).
Google Scholar 
Li, D.-B. et al. Low-temperature and effective ex situ group V doping for efficient polycrystalline CdSeTe solar cells. Nat. Energy 6, 715–722 (2021).
Article  Google Scholar 
Chen, J. et al. Determining the bonding-degradation trade-off at heterointerfaces for increased efficiency and stability of perovskite solar cells. Nat. Energy 10, 181–190 (2025).
Google Scholar 
Nielsen, R. S. et al. Variable-temperature and carrier-resolved photo-Hall measurements of high-performance selenium thin-film solar cells. Phys. Rev. B 111, 165202 (2025).
Article  Google Scholar 
Thompson, C. V. Solid-state dewetting of thin films. Annu. Rev. Mater. Res. 42, 399–434 (2012).
Article  Google Scholar 
Winterbottom, W. L. Equilibrium shape of a small particle in contact with a foreign substrate. Acta Metall. 15, 303–310 (1967).
Article  Google Scholar 
Sadan, H. & Kaplan, W. D. Au–Sapphire (0001) solid–solid interfacial energy. J. Mater. Sci. 41, 5099–5107 (2006).
Article  Google Scholar 
Ummadisingu, A. et al. The effect of illumination on the formation of metal halide perovskite films. Nature 545, 208–212 (2017).
Article  Google Scholar 
Kolobov, A. V., Oyanagi, H., Tanaka, K. & Tanaka, K. Structural study of amorphous selenium by in situ EXAFS: observation of photoinduced bond alternation. Phy. Rev. B 55, 726–734 (1997).
Article  Google Scholar 
Poborchii, V. V., Kolobov, A. V. & Tanaka, K. An in situ Raman study of polarization-dependent photocrystallization in amorphous selenium films. Appl. Phys. Lett. 72, 1167–1169 (1998).
Article  Google Scholar 
Okano, K. et al. Characterizations of a-Se based photodetectors using X-ray photoelectron spectroscopy and Raman spectroscopy. J. Non-Cryst. Solids 353, 308–312 (2007).
Article  Google Scholar 
Clement, R., Carballes, J. C. & de Cremoux, B. The photo-crystallization of amorphous selenium thin films. J. Non-Cryst. Solids 15, 505–516 (1974).
Article  Google Scholar 
Dresner, J. & Stringfellow, G. B. Electronic processes in the photo-crystallization of vitreous selenium. J. Phys. Chem. Solids 29, 303–311 (1968).
Article  Google Scholar 
Marple, M. et al. Structure of amorphous selenium by 2D 77Se NMR spectroscopy: an end to the dilemma of chain versus ring. Angew. Chem. Int. Ed. 56, 9777–9781 (2017).
Article  Google Scholar 
Tan, E. M. M. et al. Fast photodynamics of azobenzene probed by scanning excited-state potential energy surfaces using slow spectroscopy. Nat. Commun. 6, 5860 (2015).
Article  Google Scholar 
Chen, B. et al. Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. Nat. Commun. 11, 1257 (2020).
Article  Google Scholar 
Li, J. et al. Unveiling microscopic carrier loss mechanisms in 12% efficient Cu2ZnSnSe4 solar cells. Nat. Energy 7, 754–764 (2022).
Article  Google Scholar 
Li, J. et al. Defect control for 12.5% efficiency Cu2ZnSnSe4 kesterite thin-film solar cells by engineering of local chemical environment. Adv. Mater. 32, 2005268 (2020).
Article  Google Scholar 
Qu, S. et al. Redox mediator-modified self-assembled monolayer stabilizes a buried interface in efficient inverted perovskite solar cells. Energy Environ. Sci. 18, 3186–3195 (2025).
Article  Google Scholar 
Liu, S. et al. Triple-junction solar cells with cyanate in ultrawide-bandgap perovskites. Nature 628, 306–312 (2024).
Article  Google Scholar 
Huang, J., Yuan, Y., Shao, Y. & Yan, Y. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2, 17042 (2017).
Article  Google Scholar 
Wang, Y. et al. Cation disorder engineering yields AgBiS2 nanocrystals with enhanced optical absorption for efficient ultrathin solar cells. Nat. Photon. 16, 235–241 (2022).
Article  Google Scholar 
Oh, J. T. et al. Post-deposition in situ passivation of AgBiS2 nanocrystal inks for high-efficiency ultra-thin solar cells. Energy Environ. Sci. 17, 8885–8892 (2024).
Article  Google Scholar 
Tang, R. et al. Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency. Nat. Energy 5, 587–595 (2020).
Article  Google Scholar 
Dong, J. et al. Carrier management through electrode and electron-selective layer engineering for 10.70% efficiency antimony selenosulfide solar cells. Nat. Energy 10, 857–868 (2025).
Article  Google Scholar 
Wang, A. et al. Hydrogen-enhanced carrier collection enabling wide-bandgap Cd-free Cu2ZnSnS4 solar cells with 11.4% certified efficiency. Nat. Energy 10, 255–265 (2025).
Google Scholar 
Wu, T. et al. Heat treatment in an oxygen-rich environment to suppress deep-level traps in Cu2ZnSnS4 solar cell with 11.51% certified efficiency. Nat. Energy 10, 630–640 (2025).
Article  Google Scholar 
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phy. Rev. B 59, 1758–1775 (1999).
Article  Google Scholar 
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phy. Rev. Lett. 77, 3865–3868 (1996).
Article  Google Scholar 
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).
Article  Google Scholar 
Tian, D. et al. Effect of transition metal Fe adsorption on CeO2 (110) surface in the methane activation and oxygen vacancy formation: A density functional theory study. Appl. Surf. Sci. 416, 547–564 (2017).
Article  Google Scholar 
Han, Y. F., Dai, Y. B., Wang, J., Shu, D. & Sun, B. D. First-principles calculations on Al/AlB2 interfaces. Appl. Surf. Sci. 257, 7831–7836 (2011).
Article  Google Scholar 
Fu, P. et al. Organic−inorganic layered and hollow tin bromide perovskite with tunable broadband emission. ACS Appl. Mater. Interfaces 10, 34363–34369 (2018).
Article  Google Scholar 
Download references
This work is supported by the National Key Research and Development Program of China (grant no. 2024YFB4205201 to D-.J-X.), the National Natural Science Foundation of China (grant no. 22375206 to D-.J-X., grant no. 22269019 to Z.L.), the Youth Innovation Promotion Association CAS (grant no. Y2021014 to D-.J-X.) and the Natural Science Foundation of Tianjin (grant no. 22JCYBJC00480 to W.X.).
These authors contributed equally: Xin Wen, Zongbao Li, Wenbo Lu.
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
Xin Wen, Wenbo Lu, Zhouqing Wei, Qingxiang Liu, Xiaoyan An, Mingjie Feng, Jin-Song Hu, Ding-Jiang Xue & Li-Jun Wan
University of Chinese Academy of Sciences, Beijing, China
Xin Wen, Wenbo Lu, Zhouqing Wei, Qingxiang Liu, Xiaoyan An, Jin-Song Hu, Ding-Jiang Xue & Li-Jun Wan
School of Materials Science and Engineering, Wuhan Textile University, Wuhan, China
Zongbao Li
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
Jianjun Li & Gang Liu
College of Chemistry, Nankai University, Tianjin, China
Weiwei Xie
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
Shunchang Liu & Yi Hou
School of Physics, University of Electronic Science and Technology of China, Chengdu, China
Shunchang Liu
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
X.W., Z.L. and W.L. prepared films, fabricated devices and characterized them. Z.L. and W.X. performed the DFT calculations and analysed the results. J.L., Z.W., S.L., Q.L., X.A. and M.F. assisted in the material and device characterization. X.W. and D.-J.X. wrote the paper. G.L. provided valuable discussion of the work. J.-S.H. helped with the manuscript preparation. Y.H. and L.-J.W. were involved in the paper writing and revisions, and provided valuable discussion of the work. D.-J.X. conceived the idea and supervised the overall project. All authors read and commented on the manuscript.
Correspondence to Yi Hou, Ding-Jiang Xue or Li-Jun Wan.
The authors declare no competing interests.
Nature Energy thanks Xinwei Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Figs. 1–23, Tables 1–7 and References.
Statistical source data.
Statistical source data.
Statistical source data.
Statistical source data.
Statistical source data.
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
Wen, X., Li, Z., Lu, W. et al. Illumination-assisted annealing enables selenium solar cells with open-circuit voltage over 1 V and efficiency exceeding 10%. Nat Energy (2026). https://doi.org/10.1038/s41560-025-01939-x
Download citation
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s41560-025-01939-x
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative
Advertisement
Nature Energy (Nat Energy)
ISSN 2058-7546 (online)
© 2026 Springer Nature Limited
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

source

This entry was posted in Renewables. Bookmark the permalink.

Leave a Reply