Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Advertisement
Nature Photonics volume 19, pages 1345–1352 (2025)
4208
2
12
Metrics details
Thermal evaporation is a well-established technique in thin-film manufacturing and holds great promise for the scalable fabrication of perovskite solar cells. However, the performance of fully thermally evaporated perovskite solar cells lags behind that of solution-processed counterparts. Here we report a reverse layer-by-layer deposition strategy to control the diffusion of solid-phase precursor, whereby the organic formamidinium iodide is deposited before the inorganic precursors (CsI/PbCl2/PbI2). Subsequent annealing leads to enhanced interfacial contact, efficient charge extraction and top-down perovskite crystallization with enhanced vertical uniformity. We fabricate fully thermally evaporated inverted perovskite solar cells with power conversion efficiencies of 25.19% (for an active area of 0.066 cm2) and 23.38% (1 cm2 area). Unencapsulated devices retain 95.2% of their initial power conversion efficiency after 1,000 h of continuous operation at the maximum power point.
This is a preview of subscription content, access via your institution
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
USD 39.95
Prices may be subject to local taxes which are calculated during checkout
The data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are available via figshare at https://doi.org/10.6084/m9.figshare.29882729) (ref. 44).
Abzieher, T. et al. Vapor phase deposition of perovskite photovoltaics: short track to commercialization? Energy Environ. Sci. 17, 1645–1663 (2024).
Article Google Scholar
Kosasih, F. U., Erdenebileg, E., Mathews, N., Mhaisalkar, S. G. & Bruno, A. Thermal evaporation and hybrid deposition of perovskite solar cells and mini-modules. Joule 6, 2692–2734 (2022).
Article Google Scholar
Kore, B. P. et al. Efficient fully textured perovskite silicon tandems with thermally evaporated hole transporting materials. Energy Environ. Sci. 18, 354–366 (2025).
Article Google Scholar
Luo, H. et al. Inorganic framework composition engineering for scalable fabrication of perovskite/silicon tandem solar cells. ACS Energy Lett. 8, 4993–5002 (2023).
Article Google Scholar
Li, J. et al. Efficient all-thermally evaporated perovskite light-emitting diodes for active-matrix displays. Nat. Photon. 17, 435–441 (2023).
Article ADS Google Scholar
Fang, J. et al. Anion exchange promoting non-impurities enables conformable and efficient inverted perovskite solar cells. Energy Environ. Sci. 17, 7829–7837 (2024).
Article Google Scholar
Dewi, H. A., Erdenebileg, E., De Luca, D., Mhaisalkar, S. G. & Bruno, A. Accelerated MAPbI3 co-evaporation: productivity gains without compromising performance. ACS Energy Lett. 9, 4319–4322 (2024).
Article Google Scholar
Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).
Article ADS Google Scholar
Li, J. et al. Fabrication of efficient CsPbBr3 perovskite solar cells by single-source thermal evaporation. J. Alloys Compd. 818, 152903 (2020).
Article Google Scholar
Chen, M. et al. Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nat. Commun. 10, 16 (2019).
Article ADS MathSciNet Google Scholar
Chen, C.-W. et al. Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition. Adv. Mater. 26, 6647–6652 (2014).
Article Google Scholar
Feng, J. et al. High-throughput large-area vacuum deposition for high-performance formamidine-based perovskite solar cells. Energy Environ. Sci. 14, 3035–3043 (2021).
Article Google Scholar
Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L. & Meredith, P. Electro-optics of perovskite solar cells. Nat. Photon. 9, 106–112 (2015).
Article ADS Google Scholar
Ono, L. K., Wang, S., Kato, Y., Raga, S. R. & Qi, Y. Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method. Energy Environ. Sci. 7, 3989–3993 (2014).
Article Google Scholar
Li, H. et al. Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Sci. Adv. 8, eabo7422 (2022).
Article Google Scholar
Zhou, J. et al. Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material. Joule 8, 1691–1706 (2024).
Article Google Scholar
Green, M. A. et al. Solar cell efficiency tables (version 64). Prog. Photovolt. Res. Appl. 32, 425–441 (2024).
Article Google Scholar
Li, S. et al. High-efficiency and thermally stable FACsPbI3 perovskite photovoltaics. Nature 635, 82–88 (2024).
Article ADS Google Scholar
Gao, D. et al. Long-term stability in perovskite solar cells through atomic layer deposition of tin oxide. Science 386, 187–192 (2024).
Article ADS Google Scholar
Gao, H. et al. Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules. Science 383, 855–859 (2024).
Article ADS Google Scholar
Kim, B.-S., Kim, T.-M., Choi, M.-S., Shim, H.-S. & Kim, J.-J. Fully vacuum–processed perovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers. Org. Electron. 17, 102–106 (2015).
Article Google Scholar
Avila, J. et al. Ruthenium pentamethylcyclopentadienyl mesitylene dimer: a sublimable n-dopant and electron buffer layer for efficient n–i–p perovskite solar cells. J. Mater. Chem. A 7, 25796–25801 (2019).
Article Google Scholar
Kim, B.-S. et al. Simple approach for an electron extraction layer in an all-vacuum processed n-i-p perovskite solar cell. Energy Adv. 1, 252–257 (2022).
Article Google Scholar
Jiang, Y., He, S., Qiu, L., Zhao, Y. & Qi, Y. Perovskite solar cells by vapor deposition based and assisted methods. Appl. Phys. Rev. 9, 021305 (2022).
Article ADS Google Scholar
Diercks, A. et al. Sequential evaporation of inverted FAPbI3 perovskite solar cells—impact of substrate on crystallization and film formation. ACS Energy Lett. 10, 1165–1173 (2025).
Article Google Scholar
Shen, Y. et al. Strain regulation retards natural operation decay of perovskite solar cells. Nature 635, 882–889 (2024).
Article ADS Google Scholar
Feeney, T. et al. Understanding and exploiting interfacial interactions between phosphonic acid functional groups and co-evaporated perovskites. Matter 7, 2066–2090 (2024).
Article Google Scholar
Chen, S. et al. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373, 902–907 (2021).
Article ADS Google Scholar
Li, L. et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7, 708–717 (2022).
Article ADS Google Scholar
Xiong, W. et al. Controllable p- and n-type behaviours in emissive perovskite semiconductors. Nature 633, 344–350 (2024).
Article ADS Google Scholar
Wang, J. et al. High-quality additive-free α-FAPbI3 film fabricated by alkane/nanocrystals method and surface chemistry modulation for efficient perovskite solar cell. Adv. Funct. Mater. 35, 2402024 (2024).
Article Google Scholar
Liang, Z. et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624, 557–563 (2023).
Article ADS Google Scholar
Chen, C. et al. Robust fully screen-printed perovskite solar cells based on synergistic Ostwald ripening. Angew. Chem. Int. Ed. 64, e202425162 (2025).
Article Google Scholar
Lan, Z. et al. Homogenizing the electron extraction via eliminating low-conductive contacts enables efficient perovskite solar cells with reduced up-scaling losses. Adv. Funct. Mater. 34, 2316591 (2024).
Article Google Scholar
Jiang, X. et al. Isomeric diammonium passivation for perovskite–organic tandem solar cells. Nature 635, 860–866 (2024).
Article ADS Google Scholar
Wang, X. et al. Regulating phase homogeneity by self-assembled molecules for enhanced efficiency and stability of inverted perovskite solar cells. Nat. Photon. 18, 1269–1275 (2024).
Article ADS Google Scholar
Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).
Article ADS Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Article ADS Google Scholar
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Article ADS Google Scholar
Weller, M. T., Weber, O. J., Frost, J. M. & Walsh, A. Cubic perovskite structure of black formamidinium lead iodide, α-[HC(NH2)2]PbI3, at 298 K. J. Phys. Chem. Lett. 6, 3209–3212 (2015).
Article Google Scholar
Lee, K., Murray, É. D., Kong, L., Lundqvist, B. I. & Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 081101 (2010).
Article ADS Google Scholar
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).
Article ADS Google Scholar
Thompson, A. P. et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).
Article Google Scholar
Xu, Y. et al. Fully thermally evaporated perovskite solar cells based on reverse layer-by-layer deposition. figshare https://doi.org/10.6084/m9.figshare.29882729 (2025).
Download references
Y. Chen acknowledges financial support from the National Natural Science Foundation of China (22425903 and 62288102), the National Key Research and Development Program of China (2023YFB4204500), the Basic Research Program of Jiangsu (BK20243057), the Jiangsu Provincial Departments of Science and Technology (BE2022023, BK20220010, BZ2023060 and BK20241875) and the Open Research Fund of Suzhou Laboratory (SZLAB-1308-2024-ZD006). Y. Xia acknowledges financial support from the National Natural Science Foundation of China (22379067). Q.G. acknowledges financial support from the National Natural Science Foundation of China (U24A20568) and the Open Research Fund of Suzhou Laboratory (SZLAB-1308-2024-ZD006). Y. Lv acknowledges financial support from the National Natural Science Foundation of China (52302266). L.C. acknowledges financial support from the National Natural Science Foundation of China (22409091). Z.H. acknowledges financial support from the National Natural Science Foundation of China (62205142). We acknowledge the assistance from Shanghai Synchrotron Radiation Facility (SSRF) for the GIWAXS measurements, and Shanghai Ideaoptics Inc. for the PLQY and QFLS measurements. We thank B. Yu, J. Chen and D. Ma for their assistance in TA measurements.
State Key Laboratory of Flexible Electronics (LoFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
Yutian Xu, Kui Xu, Tengfei Pan, Xinwu Ke, Yajing Li, Na Meng, Xiaorong Shi, Junhao Liu, Yuanhao Cui, Ziqiang Wang, Xue Min, Yifan Lv, Lingfeng Chao, Zhelu Hu, Qingxun Guo, Yingdong Xia, Yonghua Chen & Wei Huang
Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi’an, China
Wei Huang
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
Y. Chen and Q.G. conceived of the idea and directed the overall project. W.H., Y. Chen, Q.G. and Y. Xia supervised the work. Y. Xu fabricated all the devices and conducted the characterization. T.P. and X.K. helped with the device fabrication and material characterization. Y. Li and N.M. performed the photoluminescence and electroluminescence imaging characterization. J.L., Y. Cui and Z.W. performed the atomic Kelvin probe force microscopy imaging characterization. K.X. and X.S. performed the density functional theory and molecular dynamics calculations. X.M., Y. Lv, L.C. and Z.H. participated in data analysis. Y. Xia, Q.G. and Y. Chen wrote the paper. All authors read and commented on the paper.
Correspondence to Qingxun Guo, Yingdong Xia, Yonghua Chen or Wei Huang.
The authors declare no competing interests.
Nature Photonics thanks Kyungkon Kim, Soo Young Kim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Notes 1–12, Figs. 1–45 and Table 1.
The annealing process of RLE precursor film at 170 °C, performed under ambient air condition with a relative humidity (RH) of 20%–30%.
Molecular dynamics simulation of inter-diffusion of FAI and PbI2 molecules under 443 K.
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
Xu, Y., Xu, K., Pan, T. et al. Fully thermally evaporated perovskite solar cells based on reverse layer-by-layer deposition. Nat. Photon. 19, 1345–1352 (2025). https://doi.org/10.1038/s41566-025-01768-0
Download citation
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41566-025-01768-0
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
Nature Reviews Materials (2025)
Advertisement
Nature Photonics (Nat. Photon.)
ISSN 1749-4893 (online)
ISSN 1749-4885 (print)
© 2026 Springer Nature Limited
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.