
Energy-related CO2 emissions grew by 0.9% to over 36.8 Gt in 2022 Global carbon dioxide (CO2) emissions from energy combustion and industrial processes1 grew 0.9% or 321 Mt in 2022 to a new all-time high of 36.8 Gt. This estimate is based on the IEA’s detailed region-by-region and fuel-by-fuel analysis, incorporating the latest official national statistics and publicly available data on energy use, economic indicators, and weather. Last year’s increase follows two years of exceptional oscillations in energy-related emissions. Emissions shrank by more than 5% in 2020, as the Covid-19 pandemic cut energy demand. In 2021, emissions rebounded past pre-pandemic levels, growing more than 6% in tandem with economic stimulus and the roll-out of vaccines.
Global CO2 emissions from energy combustion and industrial processes and their annual change, 1900-2022

CO2 emissions from energy combustion grew by around 1.3% or 423 Mt in 2022, while CO2 emissions from industrial processes declined by 102 Mt. Emissions growth in 2022 was below global GDP growth (+3.2%), reverting to a decadeslong trend of decoupling emissions and economic growth that was broken in 2021.
There were divergent trends between regions and sectors. CO2 emissions grew in North America and Asia (excluding People’s Republic of China [“China” hereafter]), outweighing reductions from Europe and China. At a global level, CO2 emissions from power and transport (including international bunkers) grew by 261 Mt and 254 Mt, respectively, more than offsetting reductions from industry and buildings.
Change in CO2 emissions by region and by sector, 2021-2022

Specific challenges in 2022 also contributed to the global increase in emissions. Of the overall increase of 321 Mt CO2, extreme temperatures contributed 60 Mt from heating and cooling for buildings. The decline in nuclear power generation, due to both maintenance and continued phase-outs, led to another 55 Mt CO2.
Change in global CO2 emissions by driver, 2021-2022

Reductions in emissions from natural gas were more than replaced by emissions from coal Emissions from natural gas decreased by 1.6% or 118 Mt in 2022, as an already tight gas supply was exacerbated by Russia’s invasion of Ukraine and the widespread trade disruptions that followed. Emissions reductions were particularly pronounced in Europe, where they fell by 13.5%, with the strongest year-on-year reductions coming in the last months of the year. European gas prices reached record highs in 2022 following a sharp decline in Russian gas flows. However, a mild start to winter helped reduce household heating demand. In the Asia Pacific, LNG spot prices also spiked, and natural gas emissions declined by 1.8%, the largest year-on-year decline ever seen in the region. By contrast, natural gas demand remained robust in the United States and Canada, where emissions from gas increased by 5.8%.
The resumed decline in carbon intensity resulted from the fast deployment of renewables across all regions, with renewables meeting 90% of global growth in electricity demand. Solar PV and wind generation each increased by around 275 TWh, helping to avoid around 465 Mt in power sector emissions. Although several countries registered severe droughts in 2022, global hydro generation grew by 52 TWh from 2021’s levels, which were low because of water shortages in many regions.
Global CO2 emissions by sector, 2019-2022

Reliance on coal- and gas-fired power in extreme weather drove up emissions across regions Emissions were pushed up by reliance on fossil fuel power plants to meet excess cooling demand during extreme summer heat, with cooling degree days across several regions in 2022 exceeding typical levels or even the maximum seen between 2000 and 2021. In the United States, the share of natural gas in the power fuel mix surpassed 40% in July and August. Coal power generation in China increased in August by around 15% year-on-year to exceed 500 TWh. In both countries, emissions levels for the first half of the year were lower than in 2021, before summer heat waves reversed the trend. Europe saw the second warmest start to winter in the last 30 years, and as a result, emissions from buildings were lower than anticipated. For the full year, cooling and heating demand from extreme weather pushed up global emissions by around 60 Mt CO2, around two-thirds of which came from additional cooling needs, and the remaining third from heating needs. This accounted for almost one-fifth of the total global increase in CO2 emissions.
Cooling degree days in summer months and heating degree days in winter months for selected countries/regions, 2000-2022

Energy crisis pushed European Union to cut emissions through clean power and demand reduction measures Despite the coinciding challenges of oil and gas market disruptions, hydro shortfalls due to drought, and numerous nuclear plants going offline, the European Union reduced its emissions by 2.5% (or 70 Mt), thanks to a mild winter, effective energy conservation measures, fuel switching, behaviour changes, and industrial production curtailments. Reduced natural gas emissions more than offset increases in emissions from coal and oil. Buildings sector emissions declined the most, by 60 Mt, enabled by exceptionally mild weather from October to December 2022 – the second warmest start to winter in the last 30 years – and collective energy conservation measures. Average electricity consumption was lower, even accounting for weather, and electricity use was less sensitive to temperature changes in 2022 than in 2019, pointing to the role of behaviour change. EU heat pump sales reached 2.8 million, more than doubling in several countries from the previous year. Meanwhile industry sector CO2 emissions declined by 42 Mt.
Daily average electricity load at different temperatures in the European Union, 2019 and 2022

Power sector emissions increased by 28 Mt even though electricity demand declined, as a temporarily higher reliance on coal increased carbon intensity. A 15% increase in wind and solar PV generation helped prevent further coal use with wind and solar PV for the first time jointly overtaking gas as well as nuclear as the top source of Europe’s electricity generation. This record-breaking increase in solar PV and wind generation avoided almost 75 Mt CO2 of emissions. Without hydro generation decreasing by 21% year-on-year and nuclear by 17%, another 80 Mt could have been averted.
Global energy-related greenhouse gas emissions, 2000-2022

Source:http://IEA
You must be logged in to post a comment.