Stabilized perovskite phases enabling efficient perovskite/perovskite/silicon triple-junction solar cells – Nature

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Advertisement
Nature Materials (2025)
6712 Accesses
2 Citations
21 Altmetric
Metrics details
Perovskite/perovskite/silicon triple-junction solar cells offer notable potential for high power output at low cost, yet their development is hindered by the phase instability of perovskites, which limits both device reproducibility and performance. The ~1.50-eV formamidinium lead triiodide (FAPbI3)-based middle layer degrades during subsequent fabrication steps, and the ~2.0-eV bromide-rich top layer suffers from light-induced phase segregation. Here we address these challenges by introducing ammonium propionic acid to enhance the phase stability in both perovskite layers. This strategy raises the phase transition energy barrier and suppresses vacancy defect formation through additional bonding with lattice cations. These improvements mitigate phase instabilities and enhance the power conversion efficiency of devices based on the modified perovskite films. As a result, perovskite/perovskite/silicon triple-junction solar cells achieve a power conversion efficiency of 28.7% on a 1-cm2 aperture area, with substantially improved reproducibility.
This is a preview of subscription content, access via your institution
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
USD 39.95
Prices may be subject to local taxes which are calculated during checkout
All data are available in the Article or Supplementary Information.
Rong, Y. et al. Challenges for commercializing perovskite solar cells. Science 361, eaat8235 (2018).
Article  PubMed  Google Scholar 
Li, Z. et al. Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3, 18017 (2018).
Article  CAS  Google Scholar 
Leijtens, T., Bush, K. A., Prasanna, R. & McGehee, M. D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838 (2018).
Article  CAS  Google Scholar 
Kim, J. Y., Lee, J.-W., Jung, H. S., Shin, H. & Park, N.-G. High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020).
Article  CAS  PubMed  Google Scholar 
Aydin, E. et al. Pathways toward commercial perovskite/silicon tandem photovoltaics. Science 383, eadh3849 (2024).
Article  CAS  PubMed  Google Scholar 
Best research-cell efficiencies. NREL https://www.nrel.gov/pv/cell-efficiency.html (2023).
Rühle, S. Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy 130, 139–147 (2016).
Article  Google Scholar 
Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of pn junction solar cells. J. Appl. Phys. 32, 510–519 (1961).
Article  CAS  Google Scholar 
Liu, J. et al. 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule 5, 3169–3186 (2021).
Article  CAS  Google Scholar 
Aydin, E. et al. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 623, 732–738 (2023).
Article  CAS  PubMed  Google Scholar 
Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).
Article  CAS  PubMed  Google Scholar 
Liu, J. et al. Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science 377, 302–306 (2022).
Article  CAS  PubMed  Google Scholar 
Mariotti, S. et al. Interface engineering for high-performance, triple-halide perovskite–silicon tandem solar cells. Science 381, 63–69 (2023).
Article  CAS  PubMed  Google Scholar 
Chin, X. Y. et al. Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science 381, 59–63 (2023).
Article  CAS  PubMed  Google Scholar 
Futscher, M. H. & Ehrler, B. Efficiency limit of perovskite/Si tandem solar cells. ACS Energy Lett. 1, 863–868 (2016).
Article  CAS  Google Scholar 
Hörantner, M. T. et al. The potential of multijunction perovskite solar cells. ACS Energy Lett. 2, 2506–2513 (2017).
Article  Google Scholar 
Boyd, C. C., Cheacharoen, R., Leijtens, T. & McGehee, M. D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019).
Article  CAS  PubMed  Google Scholar 
Lee, J. & Park, N. Chemical approaches for stabilizing perovskite solar cells. Adv. Energy Mater. 10, 1903249 (2020).
Article  CAS  Google Scholar 
Wang, R. et al. A review of perovskites solar cell stability. Adv. Funct. Mater. 29, 1808843 (2019).
Article  CAS  Google Scholar 
Chen, T. et al. Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite. Sci. Adv. 2, e1601650 (2016).
Article  PubMed  PubMed Central  Google Scholar 
Liu, X. et al. Stabilization of photoactive phases for perovskite photovoltaics. Nat. Rev. Chem. 7, 462–479 (2023).
Article  CAS  PubMed  Google Scholar 
He, J. et al. Influence of phase transition on stability of perovskite solar cells under thermal cycling conditions. Sol. Energy 188, 312–317 (2019).
Article  CAS  Google Scholar 
Sheikh, A. D. et al. Effects of high temperature and thermal cycling on the performance of perovskite solar cells: acceleration of charge recombination and deterioration of charge extraction. ACS Appl. Mater. Interfaces 9, 35018–35029 (2017).
Article  CAS  PubMed  Google Scholar 
Palmstrom, A. F. et al. Enabling flexible all-perovskite tandem solar cells. Joule 3, 2193–2204 (2019).
Article  CAS  Google Scholar 
Johnson, S. A. et al. Improving the barrier properties of tin oxide in metal halide perovskite solar cells using ozone to enhance nucleation. Joule 7, 2873–2893 (2023).
Article  CAS  Google Scholar 
Xu, F. et al. Monolithic perovskite/perovskite/silicon triple-junction solar cells with cation double displacement enabled 2.0 eV perovskites. Joule 8, 224–240 (2024).
Article  CAS  Google Scholar 
Hultqvist, A. et al. SnOx atomic layer deposition on bare perovskite—an investigation of initial growth dynamics, interface chemistry, and solar cell performance. ACS Appl. Energy Mater. 4, 510–522 (2021).
Article  CAS  PubMed  PubMed Central  Google Scholar 
Knight, A. J. & Herz, L. M. Preventing phase segregation in mixed-halide perovskites: a perspective. Energy Environ. Sci. 13, 2024–2046 (2020).
Article  CAS  Google Scholar 
Slotcavage, D. J., Karunadasa, H. I. & McGehee, M. D. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1, 1199–1205 (2016).
Article  CAS  Google Scholar 
Barker, A. J. et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2, 1416–1424 (2017).
Article  CAS  Google Scholar 
Knight, A. J. et al. Halide segregation in mixed-halide perovskites: influence of A-site cations. ACS Energy Lett. 6, 799–808 (2021).
Article  CAS  PubMed  PubMed Central  Google Scholar 
Xiang, W., Liu, S. F. & Tress, W. A review on the stability of inorganic metal halide perovskites: challenges and opportunities for stable solar cells. Energy Environ. Sci. 14, 2090–2113 (2021).
Article  CAS  Google Scholar 
Ono, L. K., Qi, Y. & Liu, S. F. Progress toward stable lead halide perovskite solar cells. Joule 2, 1961–1990 (2018).
Article  CAS  Google Scholar 
Yao, D. et al. 2D–3D mixed organic–inorganic perovskite layers for solar cells with enhanced efficiency and stability induced by n-propylammonium iodide additives. ACS Appl. Mater. Interfaces 11, 29753–29764 (2019).
Article  CAS  PubMed  Google Scholar 
Lin, Y. et al. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures. J. Phys. Chem. Lett. 9, 654–658 (2018).
Article  CAS  PubMed  Google Scholar 
Li, H. et al. 2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nat. Energy 8, 946–955 (2023).
Article  CAS  Google Scholar 
Fei, C. et al. Self-assembled propylammonium cations at grain boundaries and the film surface to improve the efficiency and stability of perovskite solar cells. J. Mater. Chem. A 7, 23739–23746 (2019).
Article  CAS  Google Scholar 
Zhang, Y. et al. Propylammonium chloride additive for efficient and stable FAPbI3 perovskite solar cells. Adv. Energy Mater. 11, 2102538 (2021).
Article  CAS  Google Scholar 
Zheng, X. et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131–140 (2020).
Article  CAS  Google Scholar 
Wang, R. et al. Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 3, 1464–1477 (2019).
Article  CAS  Google Scholar 
Wang, R. et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366, 1509–1513 (2019).
Article  CAS  PubMed  Google Scholar 
Park, B. et al. Publisher correction: stabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cells. Nat. Energy 6, 848 (2021).
Article  Google Scholar 
Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023).
Article  CAS  PubMed  Google Scholar 
Shi, P. et al. Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620, 323–327 (2023).
Article  CAS  PubMed  Google Scholar 
Download references
We acknowledge the use of the KAUST Solar Center and the support of its staff, and J. Xu is involved in the DFT discussion. Computing resources used in this work were provided by the National Center for High Performance Computing of Turkey (UHeM) under grant number 1015902023, supporting I.Y. and C.D. The KAUST team was supported by the KAUST Office of Sponsored Research (OSR) under award numbers URF/1/4350-01, URF/1/4669-01 and URF/1/5035-01.
Erkan Aydin
Present address: Department of Chemistry, Ludwig-Maximilians-Universität (LMU), Munich, Germany
Jiang Liu
Present address: College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, People’s Republic of China
Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
Fuzong Xu, Erkan Aydin, Esma Ugur, Jiang Liu, Xuechun Zhang, Arsalan Razzaq, Lujia Xu, Marco Marengo, Badri Vishal, Adi Prasetio, Anand Subbiah, Anil Pininti, Thomas Allen & Stefaan De Wolf
Department of Physics, Marmara University, Istanbul, Turkey
Ilhan Yavuz & Caner Deger
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
F.X. conceived the idea. F.X. and E.A. wrote the paper. F.X. developed all the 1-J and tandem solar cells, performed all the characterizations if not claimed specifically, and analysed all the data and performed all the calculations with the other co-authors. F.X. and J.L. performed the JV and EQE measurements of 3-J solar cells and the transient photocurrent decay. I.Y. and C.D. performed the DFT calculations. E.U. conducted the QFLS measurement. L.X. performed the S–Q limit simulation. B.V. performed the STEM analysis. X.Z. conducted the XRD characterization. T.A. performed the SPICE simulations. A.R., T.A. and A. Pininti contributed to the Si bottom-cell fabrication. S.D.W. supervised the project and secured funding for this research. A. Prasetio. and A.S. contributed to the schematics and data analysis. M.M. contributed to the encapsulation of devices and stability measurement. All authors participated in the paper preparation.
Correspondence to Fuzong Xu or Stefaan De Wolf.
The authors declare no competing interests.
Nature Materials thanks Yi Hou, Christian Wolff and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Note, Figs. 1–29 and Table 1.
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
Xu, F., Aydin, E., Yavuz, I. et al. Stabilized perovskite phases enabling efficient perovskite/perovskite/silicon triple-junction solar cells. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02367-8
Download citation
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s41563-025-02367-8
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative
Nature Materials (2025)
Advertisement
Nature Materials (Nat. Mater.)
ISSN 1476-4660 (online)
ISSN 1476-1122 (print)
© 2026 Springer Nature Limited
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

source

This entry was posted in Renewables. Bookmark the permalink.

Leave a Reply