Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Advertisement
Nature volume 648, pages 84–90 (2025)
12k
5
96
Metrics details
Tin-based perovskite solar cells (TPSCs) have emerged as a promising non-toxic and environmentally friendly alternative to lead-based devices1,2,3, with certified power conversion efficiencies (PCEs) of inverted architectures now exceeding 16% (refs. 4,5,6,7,8). Despite an ideal bandgap supporting a theoretical PCE of more than 33%, TPSCs still lag in performance and stability, partly because of suboptimal hole transport layers and a poor buried interface that hinder hole extraction. Here we report (E)-(2-(4′,5′-bis(4-(bis(4-methoxyphenyl)amino)phenyl)-[2,2′-bithiophen]−5-yl)−1-cyanovinyl)phosphonic acid at the buried interface, using a molecular film to optimize hole transport layers in inverted TPSCs. This molecular film forms a homogeneous interfacial layer with well-matched energy-level alignment, markedly enhancing hole extraction. Moreover, this approach creates a superwetting underlayer that guides the growth of uniform, high-quality Sn-based perovskite films with reduced defect density and minimized non-radiative recombination losses. The resulting inverted small-area TPSCs demonstrate a record PCE of 17.89% (certified 17.71% under reverse scanning mode). Furthermore, the encapsulated device maintains more than 95% of the initial PCE after 1,344 h of ambient shelf storage and more than 94% after 1,550 h of continuous operation under 1-sun illumination. Notably, we achieve a record PCE of 14.40% for 1 cm2 TPSCs, highlighting the scalability of our strategy.
This is a preview of subscription content, access via your institution
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
USD 39.95
Prices may be subject to local taxes which are calculated during checkout
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Information. Source data are provided with this paper.
Gao, H. et al. Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules. Science 383, 855–859 (2024).
Article ADS CAS PubMed Google Scholar
Li, J. et al. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nat. Commun. 11, 310 (2020).
Article ADS PubMed Central Google Scholar
Ren, M., Qian, X., Chen, Y., Wang, T. & Zhao, Y. Potential lead toxicity and leakage issues on lead halide perovskite photovoltaics. J. Hazard. Mater. 426, 127848 (2022).
Article CAS PubMed Google Scholar
He, D. et al. Homogeneous 2D/3D heterostructured tin halide perovskite photovoltaics. Nat. Nanotechnol. 20, 779–786 (2025).
Article ADS CAS PubMed Google Scholar
Chen, J. et al. Spatially isomeric fulleropyrrolidines enable controlled stacking of perovskite colloids for high-performance tin-based perovskite solar cells. Angew. Chem. Int. Ed. 64, e202420150 (2025).
Article CAS Google Scholar
Chen, J. et al. Efficient tin-based perovskite solar cells with trans-isomeric fulleropyrrolidine additives. Nat. Photon. 18, 464–470 (2024).
Article ADS CAS Google Scholar
Wang, J. et al. Colloidal zeta potential modulation as a handle to control the crystallization kinetics of tin halide perovskites for photovoltaic applications. Angew. Chem. Int. Ed. 63, e202317794 (2024).
Article CAS Google Scholar
Shi, Y. et al. Interfacial dipoles boost open-circuit voltage of tin halide perovskite solar cells. ACS Energy Lett. 9, 1895–1897 (2024).
Article CAS Google Scholar
Li, T. et al. Functional layers in efficient and stable inverted tin-based perovskite solar cells. Joule 7, 1966–1991 (2023).
Article CAS Google Scholar
Li, T. et al. Alleviating the crystallization dynamics and suppressing the oxidation process for tin-based perovskite solar cells with fill factors exceeding 80 percent. Adv. Funct. Mater. 33, 2308457 (2023).
Article CAS Google Scholar
Li, T. et al. Metal chalcogenide electron extraction layers for nip-type tin-based perovskite solar cells. Nat. Commun. 15, 9435 (2024).
Article ADS CAS PubMed PubMed Central Google Scholar
Zhou, J. et al. Acidity control of interface for improving stability of all-perovskite tandem solar cells. Adv. Energy Mater. 13, 2300968 (2021).
Article Google Scholar
Cameron, J. & Skabara, P. J. The damaging effects of the acidity in PEDOT:PSS on semiconductor device performance and solutions based on non-acidic alternatives. Mater. Horiz. 7, 1759–1772 (2020).
Article CAS Google Scholar
Jing, Y. et al. Interface field engineering of weakly alkaline-treated PEDOT:PSS for enhanced performance and stability of tin-based perovskite solar cells. J. Phys. Chem. Lett. 16, 5258–5264 (2025).
Article CAS PubMed Google Scholar
Chin, Y. et al. Suppressing PEDOT:PSS doping-induced interfacial recombination loss in perovskite solar cells. ACS Energy Lett. 7, 560–568 (2022).
Article CAS PubMed PubMed Central Google Scholar
Zhu, J. et al. A donor–acceptor-type hole-selective contact reducing non-radiative recombination losses in both subcells towards efficient all-perovskite tandems. Nat. Energy 8, 714–724 (2023).
Article ADS CAS Google Scholar
Chen, H. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2023).
Article ADS CAS PubMed Google Scholar
Li, Z. et al. Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science 382, 284–289 (2023).
Article ADS CAS PubMed Google Scholar
Wang, F. et al. 2D-quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability. Joule 2, 2732–2743 (2018).
Article CAS Google Scholar
Tong, X. et al. Solution-processed NiOx nanoparticles with a wide pH window as an efficient hole transport material for high performance tin-based perovskite solar cells. J. Phys. D Appl. Phys. 54, 144002 (2021).
Article ADS CAS Google Scholar
Wang, T. et al. 2D WSe2 flakes for synergistic modulation of grain growth and charge transfer in tin-based perovskite solar cells. Adv. Sci. 8, 2004315 (2021).
Article CAS Google Scholar
Li, B. et al. Suppressing oxidation at perovskite–NiOx interface for efficient and stable tin perovskite solar cells. Adv. Mater. 36, 2309768 (2023).
Article Google Scholar
Park, S. M. et al. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624, 289–294 (2023).
Article ADS CAS PubMed Google Scholar
Liu, S. et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024).
Article ADS Google Scholar
Zhang, S. et al. Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404–409 (2023).
Article ADS CAS PubMed Google Scholar
Zhao, K. et al. Peri-fused polyaromatic molecular contacts for perovskite solar cells. Nature 632, 301–306 (2024).
Article ADS CAS Google Scholar
Zheng, X. et al. Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells. Nat. Energy 8, 462–472 (2023).
Article ADS CAS Google Scholar
He, R. et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618, 80–86 (2023).
Article ADS CAS Google Scholar
Wang, X. et al. Regulating phase homogeneity by self-assembled molecules for enhanced efficiency and stability of inverted perovskite solar cells. Nat. Photon. 18, 1269–1275 (2024).
Article ADS CAS Google Scholar
Tang, H. et al. Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells. Science 383, 1236–1240 (2024).
Article ADS CAS Google Scholar
Fei, C. et al. Strong-bonding hole-transport layers reduce ultraviolet degradation of perovskite solar cells. Science 384, 1126–1134 (2024).
Article ADS CAS Google Scholar
Li, M., Liu, M., Feng, Q., Lin, F. R. & Jen, A. K.-Y. Self-assembled monolayers for interfacial engineering in solution-processed thin-film electronic devices: design, fabrication, and applications. Chem. Rev. 124, 2138–2204 (2024).
Article CAS PubMed Google Scholar
Bi, H. Selective contact self-assembled molecules for high-performance perovskite solar cells. eScience 5, 100329 (2025).
Article Google Scholar
Yu, S. et al. Homogenized NiOx nanoparticles for improved hole transport in inverted perovskite solar cells. Science 382, 1399–1404 (2023).
Article ADS CAS PubMed Google Scholar
Isikgor, F. H. et al. Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 8, 89–108 (2023).
Article ADS CAS Google Scholar
Jin, J. et al. Regulating compressive strain enables high-performance tin-based perovskite solar cells. Adv. Energy Mater. 15, 2403718 (2025).
Article CAS Google Scholar
Zhu, C. et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10, 815 (2019).
Article ADS CAS PubMed PubMed Central Google Scholar
Liu, D. et al. Strain analysis and engineering in halide perovskite photovoltaics. Nat. Mater. 20, 1337–1346 (2021).
Article ADS CAS PubMed Google Scholar
Jiang, X. et al. One-step synthesis of SnI2·(DMSO)x adducts for high-performance tin perovskite solar cells. J. Am. Chem. Soc. 143, 10970–10976 (2021).
Article ADS CAS Google Scholar
Yu, B.-B. et al. Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%. Adv. Mater. 33, 2102055 (2021).
Article CAS Google Scholar
Sun, C. et al. Well-defined fullerene bisadducts enable high-performance tin-based perovskite solar cells. Adv. Mater. 35, 2205603 (2023).
Article CAS Google Scholar
Zhou, X. et al. Additive engineering with 2,8-dibromo-dibenzothiophene-S,S-dioxide enabled tin-based perovskite solar cells with 14.98% power conversion efficiency. Energy Environ. Sci. 17, 2837–2844 (2024).
Article CAS Google Scholar
Ran, C. et al. Conjugated organic cations enable efficient self-healing FASnI3 solar cells. Joule 12, 3072–3087 (2019).
Article Google Scholar
Zhang, Z. et al. Improved air stability of tin halide perovskite solar cells by an n-type active moisture barrier. Adv. Funct. Mater. 34, 2306458 (2024).
Article CAS Google Scholar
Liu, X. et al. Lead-free perovskite solar cells with over 10% efficiency and size 1 cm2 enabled by solvent–crystallization regulation in a two-step deposition method. ACS Energy Lett. 7, 425–431 (2022).
Article ADS CAS Google Scholar
Ye, T. et al. Localized electron density engineering for stabilized B-γ CsSnI3-based perovskite solar cells with efficiencies >10%. ACS Energy Lett. 6, 1480–1489 (2021).
Article CAS Google Scholar
Chowdhury, T. H. et al. Post-deposition vapor annealing enables fabrication of 1 cm2 lead-free perovskite solar cells. Sol. RRL 3, 1900245 (2019).
Article CAS Google Scholar
Vegiraju, S. et al. Benzodithiophene hole-transporting materials for efficient tin-based perovskite solar cells. Adv. Funct. Mater. 29, 1905393 (2019).
Article CAS Google Scholar
Ke, W. et al. Dopant-free tetrakis-triphenylamine hole transporting material for efficient tin-based perovskite solar cells. J. Am. Chem. Soc. 140, 388–393 (2018).
Article ADS CAS PubMed Google Scholar
Ke, W. et al. Efficient lead-free solar cells based on hollow {en}MASnI3 perovskites. J. Am. Chem. Soc. 139, 14800–14806 (2017).
Article ADS CAS Google Scholar
Download references
J.L. acknowledges the funding support from the National Natural Science Foundation of China (52102219 and 52471197). Y.R. acknowledges the funding support from the National Natural Science Foundation of China (52202178). H.W. acknowledges the National Natural Science Foundation of China (62074109, 22372114). B.X. acknowledges the Natural Science Foundation of Jiangsu Province (BK20240083) and the National Natural Science Foundation of China (22279059, W2412114). Y.Q. acknowledges the support from the Global Institute of Future Technology and the Zhangjiang Institute for Advanced Study in Shanghai Jiao Tong University.
College of Smart Materials and Future Energy, State Key Laboratory of Photovoltaic Science and Technology, Fudan University, Shanghai, China
Tianpeng Li, Peilin Wang, Zuoming Jin, Wenqi Zhang & Jia Liang
Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
Xin Luo & Bo Xu
Department of Control Science & Engineering, Tongji University, Shanghai, China
Zhi Li
Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, China
Yimeng Li & Hua Wang
Shanghai Nanoshine Technology, Shanghai, China
Jinhai Huang
School of Microelectronics, Fudan University, Shanghai, China
Yingguo Yang
Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
Yingguo Yang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
Bin Li & Qinghong Zhang
College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
Siyuan Lin & Yichuan Rui
Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai, China
Yiqiang Zhan
Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, China
Yabing Qi
Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
Yabing Qi
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
PubMed Google Scholar
T.L. fabricated and characterized the devices and wrote the original draft. X.L., Y.L., J.H., H.W. and B.X. designed and synthesized MBC and MBP. P.W. and Z.L. conducted all calculations. P.W., Z.L., W.Z. and Z.J. actively contributed to all discussions. Y.Y. contributed to the GIWAXS test and analysis. S.L. and Y.R. contributed to the SEM test and analysis. B.L. and Q.Z. carried out the EIS experiments. Y.Z. and Q.Z. supported this work. J.L. and Y.Q. conceived the idea and were responsible for reviewing and editing the paper, supervision, project administration and funding acquisition for this work. Y.Q. contributed to revisions of the manuscript.
Correspondence to Bo Xu, Jia Liang or Yabing Qi.
J.H. is the founder of Shanghai Nanoshine Technology, which commercializes functional materials for perovskite photovoltaics. The other authors declare that they have no competing interests.
Nature thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This file contains Supplementary Schemes 1–4, Supplementary Note I, Supplementary Figs. 1–31, Supplementary Tables 1–5 and references.
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
Li, T., Luo, X., Wang, P. et al. Tin-based perovskite solar cells with a homogeneous buried interface. Nature 648, 84–90 (2025). https://doi.org/10.1038/s41586-025-09724-2
Download citation
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41586-025-09724-2
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
Science China Materials (2025)
Advertisement
Nature (Nature)
ISSN 1476-4687 (online)
ISSN 0028-0836 (print)
© 2025 Springer Nature Limited
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.